/ξ η 结构要进入弹塑性变形状态 对框支层要求较框-墙结构加严 可采用静力弹塑性分析方法或弹塑性时程分析法等 5.5.1 p 故类比框架-抗震墙结构 一般不超过2~3处 可取底层 较为精确的结构弹塑性分析方法 支撑框架的恢复力模型同时考虑了压屈后的强度退化和刚度退化 在罕遇地震作用下隔震和消能减震部件应能起到降低地震效应和保护主体结构的作用 1 p 除了这些结构刚度相对较小而变形较大外 可按表5.5.5采用 上角a表示“实际的” 底层的屈服强度系数为0.7~0.3 5)不规则的地下建筑结构及地下空间综合体 Ⅳ类场地和9度区 Ⅱ类危险性的建筑(容纳人数较多) 框架取0.1n(层数) 不同结构类型给出弹性层间位移角限值范围 或产生次生灾害或对救灾 由于底部框架砌体房屋沿竖向存在刚度突变 ]——弹塑性层间位移角限值 弹塑性变形增大系数也在统计平均意义下有一定的可靠性 本次修订进一步增加了弹塑性变形验算的范围 第一阶段设计 2)7~9度时楼层屈服强度系数小于0.5的钢筋混凝土框架结构和框排架结构 则对应的弹塑性位移角限值分别大于1/60和1/75 采用二阶段设计方法来实现 主要依据国内外大量的试验研究和有限元分析的结果 其中轴压比和配箍率是最主要的因素 当柱子全高的箍筋构造比本规范第6.3.9条规定的体积配箍率大30%时 即△u 4)甲类建筑和9度时乙类建筑中的钢筋混凝土结构和钢结构 除1款以外的建筑结构 不开洞填充墙框架为1/2500 一是按假想的完全弹性体计算 其他情况可采用内插法取值 严于抗震要求 规则结构可采用弯剪层模型或平面杆系模型 一般需要用静力弹塑性分析 在弹性刚度沿高度变化较平缓时 一般可取弹性刚度 支撑框架取0.09n 因此本条不再单列对于单层工业厂房的弹性位移限值 恢复重建及生产 配箍率 建筑主体结构不受损坏 p 取1/1000 根据数千个(1~15)层剪切型结构采用理想弹塑性恢复力模型进行弹塑性时程分析的计算结果 取二者的平均值约为1/3000~1/1600 不带填充墙时为1/800 多层工业厂房应区分结构材料(钢和混凝土)和结构类型(框 可提高20%但累计不超过25% 实现第一水准下的设防要求 可取该系数最小的楼层(部位)和相对较小的楼层 可按表内相应数值的1.5 对其他情况 e 结构构件严重破坏甚至引起结构倒塌 除了89规范所规定的高大的单层工业厂房的横向排架 y 5.5.4 5.5 利用DRAIN-2D程序对三跨的平面钢框架和中跨为交叉支撑的三跨钢结构进行了不同层数钢结构的弹塑性地震反应分析 各作用分项系数均取1.0 其开裂层间位移角 ξ c 筒结构高层建筑的结构抗震计算结果 不开洞填充墙时为1/2000 一一罕遇地震作用下按弹性分析的层间位移 支撑承担的地震剪力为总地震剪力的75% 板柱-抗震墙和框架-核心筒结构中大部分水平地震作用由抗震墙承担 抗震墙要比框架柱先进入弹塑性状态 当薄弱层(部位)的屈服强度系数不小于相邻层(部位)该系数平均值的0.8时 5.5.4 各作用分项系数均应采用1.0 取4 可以是三维的静力弹塑性(如push-over方法)或弹塑性时程分析方法 对排架柱 结构在罕遇地震作用下薄弱层(部位)弹塑性变形计算 内外装修等)没有过重破坏并导致人员伤亡 可近似用均匀结构的η 采用 单层厂房往往在上柱 钢筋混凝土框架结构的层间位移是楼层梁 有限元分析结果为1/4000~1/2500 可采用下列方法 p 属于本规范第3.4节规定的不规则结构应采用空间结构模型 5.5.5 下列结构宜进行弹塑性变形验算 保证建筑的正常使用功能 弹塑性层间位移可按下列公式计算 1 根据本规范所提出的抗震设防三个水准的要求 在支撑框架中 其中85%小于1/1200 因此要求进行抗震变形验算 本规范取1/250 h——计算楼层层高 楼层屈服强度系数为按钢筋混凝土构件实际配筋和材料强度标准值计算的楼层受剪承载力和按罕遇地震作用标准值计算的楼层弹性地震剪力的比值 2 在多遇地震作用下 ①纯框架结构的弹塑性位移反应与弹性位移反应差不多 框-筒结构的弹性位移角限值范围为1/800 p △u 1)本规范表5.1.2-1所列高度范围且属于本规范表3.4.3-2所列竖向不规则类型的高层建筑结构 钢筋混凝土结构构件的截面刚度可采用弹性刚度 计算结构楼层或构件的屈服强度系数时 0 △u 获得如下统计规律 建筑主体结构遭受破坏或严重破坏但不倒塌 y 1)楼层屈服强度系数沿高度分布均匀的结构 1 2001规范统计了我国当时建成的124幢钢筋混凝土框-墙 e 1)8度Ⅲ 均匀的多层结构 参照美国加州规范(1988)对基本自振周期大于0.7s的结构的规定 单层钢筋混凝土柱排架为1/30 分布均匀的结构多在底层 日本建筑法施行令定为层高的1/200 除以弯曲变形为主的高层建筑外 美国ATC3-06规定 支撑框架的弹塑性位移增大系数大于框架结构 宜适当考虑构件开裂时的刚度退化 高度超过150m或H/B>6的高层建筑 弹塑性位移增大系数增大 5)采用隔震和消能减震设计的结构 根据各国规范的规定 Ⅳ类场地和8度时乙类建筑中的钢筋混凝土结构和钢结构 因此对框-墙 如果弹性位移角限值为1/300 非结构构件(包括围护墙 钢筋混凝土框架结构及高大单层钢筋混凝土柱厂房等结构 y 对于底部框架-抗震墙结构 可按表5.5.4 剪跨比 框架取屈服后刚度为弹性刚度0.02的不退化双线性模型 考虑到底部框架一般均带一定数量的抗震墙 结构薄弱层(部位)弹塑性层间位移的简化计算 其中采用第二种的最多 考虑到弹塑性变形计算的复杂性 其情况复杂 楼层屈服剪力 不均匀的结构 框-筒 y 注 在强烈地震作用下 有限元分析结果表明 一般不扣除由于结构重力P-△效应所产生的水平相对位移 对于屈服强度系数ξ 属于乙类建筑的生命线工程中的关键部位在强烈地震作用下一旦遭受破坏将带来严重后果 以下是15层和20层钢结构的弹塑性增大系数的统计数值(平均值加一倍方差) 生活造成很大影响 板柱-墙 考虑到钢结构在构件稳定有保证时具有较好的延性 当不大于该平均值的0.5 ③楼层屈服强度系数较小时 =η 可按层数和ξ 如果建筑结构中存在薄弱层或薄弱部位 同时 3 3)单层厂房 1)多层结构存在“塑性变形集中”的薄弱层是一种普遍现象 4 ②随着屈服强度系数的减小 5.5.5 抗震墙 本规范不再区分有填充墙和无填充墙 对于框架-抗震墙结构的抗震墙 对于单层厂房 可以扣除结构整体弯曲所产生的楼层水平绝对位移值 采用杆系模型时楼层屈服强度系数计算 当轴压比小于0.40时 对各类钢筋混凝土结构和钢结构要求进行多遇地震作用下的弹性变形验算 日本对176个带边框柱抗震墙的试验研究表明 在罕遇地震作用下 在上述试验研究结果的基础上 当然 根据震害经验 注 3)高度大于150m的结构 这部分位移在计算的层间位移中占有相当的比例 对屈服强度系数ξ 框架的一般层约为底层的0.7 混凝土强度等级 如取0.85E 幕墙 因此不必再对地震作用下的弹性位移加以限制 指按实际配筋面积 2 y 抗震变形验算 试验结果为1/3300~1/1100 对不同的建筑结构提出不同的要求 弯曲变形所占比重较大 应计入扭转变形 I 对于ξ 结构薄弱层(部位)弹塑性层间位移应符合下式要求 弹塑性时程分析法或内力重分布法等予以估计 式中 可能与钢结构基本周期较长 宜符合下列要求 抗震墙的极限位移角的分布为1/333~1/125 这种破坏多发生在8度Ⅲ 分布不均匀结构则在ξ 式中: 对钢筋混凝土框架结构 弹塑性层间位移角限值可比框架结构的框架柱严 y 钢筋混凝土梁柱的正截面受弯实际承载力公式如下 5.5.2 △u 极限侧移角的分布为1/27~1/8 二是将额定的地震作用下的弹性变形乘以放大系数 根据计算结果的统计分析发现 其层间变位角限值应专门研究确定 抗震变形验算 实际承载力应取截面的实际配筋和材料强度标准值计算 可不扣除结构整体弯曲变形 并仍按构件截面弹性刚度计算 如未扣除 ]——弹性层间位移角限值 考虑到框架-抗震墙结构 对建筑结构在罕遇地震作用下薄弱层(部位)弹塑性变形计算 对不超过20层的钢框架和框架-支撑结构的薄弱层层间弹塑性位移的简化计算公式开展了研究 结构薄弱层(部位)的位置可按下列情况确定 对双重抗侧力体系中的框架-中心支撑结构取5 2 最小处和相对较小处 弹塑性层间位移的计算和限值在本规范第5.5.4和第5.5.5条有规定 排架) 支撑框架的一般层约为底层的0.9 框排架结构中的排架柱的弹塑性层间位移角限值 随着弹塑性分析模型和软件的发展和改进 其最大的层间弹塑变形增大系数η 三是按时程分析法等专门程序计算 其楼层内最大的弹性层间位移应符合下式要求 采用隔震和消能减震技术的建筑结构 轴压比 取1/120作为抗震墙和筒中筒结构的弹塑性层间位移角限值 高层钢结构 由于结构薄弱部位产生了弹塑性变形 美国对36个梁-柱组合试件试验结果表明 本条规定框架和板柱-框架的位移角限值为1/50是留有安全储备的 框架结构试验结果表明 在本规范附录H第H.1节中规定为1/30 美国AISC《房屋钢结构抗震规定》(1997)中规定 Ⅳ类场地和9度时 可提高10% 本规范的设计反应谱是在大量单质点系的弹性反应分析基础上统计得到的“平均值” 倍采用 墙)和节点达到极限变形时的层间极限位移角作为罕遇地震作用下结构弹塑性层间位移角限值的依据 配筋率等 式中: 框架部分承担25% 更主要的是存在承载力验算所没有发现的薄弱部位——其承载力本身虽满足设计地震作用下抗震承载力的要求 y 上述统计值与89规范对剪切型结构的统计值有一定的差异 恢复力模型 则底部和过渡层是明显的薄弱部位 弹塑性位移增大系数接近1 钢结构在弹性阶段的层间位移限值 此外 宜按表5.5.1采用 [θ ——多遇地震作用标准值产生的楼层内最大的弹性层间位移 国外规范规定需考虑一定的非线性而取有效刚度 因为以弯曲变形为主的高层建筑结构 下列结构应进行弹塑性变形验算 4)高度不大于150m的其他高层钢结构 5.5.3 影响结构层间极限位移角的因素很多 而且最终破坏也相对集中在抗震墙单元 不开洞填充墙和开洞填充墙框架的极限侧移角平均分别为1/30和1/38 开洞填充墙框架为1/926 材料强度标准值和轴向力计算的正截面受弯承载力与按罕遇地震作用标准值计算的弹性地震弯矩的比值 高大的单层钢筋混凝土柱厂房的横向排架 时 应符合下列要求 2001规范修订过程中 计算时 主要计算参数如下 对框架-偏心支撑结构 层间最大位移角限值为1/67 钢筋混凝土结构的弹塑性变形主要由构件关键受力区的弯曲变形 5.5.1 不同结构类型的不同结构构件的弹塑性变形能力是不同的 如采用延性系数来表示多层结构的层间变形 2 以及钢结构恢复力模型的屈服后刚度取为初始刚度的0.02而不是理想弹塑性恢复力模型等有关 板柱-抗震墙及结构体系不规则的某些高层建筑结构和乙类建筑也要求进行罕遇地震作用下的抗震变形验算 采用层间位移角作为衡量结构变形能力从而判别是否满足建筑功能要求的指标是合理的 大震时的位移角放大系数 试验研究和计算分析结果 震害经验表明 单层工业厂房的弹性层间位移角需根据吊车使用要求加以限制 结构周期 钢筋混凝土结构构件的刚度 变形验算以弹性层间位移角表示 以钢筋混凝土构件(框架柱 提出以构件(梁 的差异用表格形式给出 楼层屈服强度系数小于0.5的框架结构 柱 节点弹塑性变形的综合结果 [θ 隔墙 可用μ=η e 却比相邻部位要弱得多 对于开裂层间位移角 一一弹塑性层间位移 弹性变形验算属于正常使用极限状态的验算 μ一一楼层延性系数 均按89规范的1/550采用 国内外许多研究结果表明 2)多层剪切型结构薄弱层的弹塑性变形与弹性变形之间有相对稳定的关系 钢筋混凝土结构在罕遇地震作用下 1 位移角限值可有所放宽 在大地震中往往受到严重破坏甚至倒塌 弹塑性层间位移角限值适当放宽至1/50 国内对11个带边框低矮抗震墙试验所得到的极限位移角分布为1/192~1/112 p 一一弹塑性层间位移增大系数 包括 5.5 12层以下且层刚度无突变的框架结构及单层钢筋混凝土柱厂房可采用规范的简化方法计算 还应注意简化方法都有其适用范围 有时尚可采用塑性内力重分布的分析方法等 柱 本规范规定与位移限值相配套 计算时 由于支撑的屈曲失效效应 剪切变形和节点区受拉钢筋的滑移变形等三部分非线性变形组成 破坏部位是上柱 我国学者对数十榀填充墙框架的试验结果表明 当计算的变形较大时 e 2)7度Ⅲ 取位移角限值为1/100 与小震相比 5.5.3 本条继续保持89规范所采用的方法 一一层间屈服位移 2)楼层屈服强度系数沿高度分布不均匀的结构 实际震害分析及实验研究表明 梁柱的相对强弱关系 p 单层钢筋混凝土柱厂房可采用本规范第5.5.4条的简化计算法 对抗震墙和筒中筒结构层间弹性位移角限值范围为1/1000 式中 不超过12层且层刚度无突变的钢筋混凝土框架和框排架结构 对隔震和消能减震部件应有位移限制要求 p 因为上柱的承载力一般相对较小且其下端的支承条件不如下柱 NG为对应于重力荷载代表值的柱轴压力(分项系数取1.0) △u 即 y 在罕遇地震作用下 与现行的混凝土高层规程相当 3 3)板柱-抗震墙结构和底部框架砌体房屋 加以扣除比较合理 表5.5.1所列各类结构应进行多遇地震作用下的抗震变形验算 分别采用相应的弹性及弹塑性层间位移角限值 但比抗震墙和筒中筒结构要松 因此对其混凝土框架部分适当从严 震害经验和实验研究结果及工程实例分析 h——薄弱层楼层高度或单层厂房上柱高度 适当放大取值 抗震墙等)开裂时的层间位移角作为多遇地震下结构弹性层间位移角限值 一一楼层屈服强度系数 各国规范的变形估计公式有三种 故取1/100 计算 地震波取80条天然波 底部框架砖房等之外 可取上柱 其位置 在多遇地震作用下的最大弹性层间位移均小于1/800 鉴于甲类建筑在抗震安全性上的特殊要求 结构在罕遇地震作用下薄弱层的弹塑性变形验算 5.5.2 迄今 △u