塑性中和轴在混凝土翼板内时的组合梁截面及应力图形 式中 并达到轴心抗压强度设计值 A f 如果0.5V 1 混凝土翼板的抗剪作用亦较大 st st 其代表的组合梁负弯矩弯剪承载力相关关系为 否则 按下列规定考虑弯矩与剪力的相互影响 ——钢梁受压区截面面积(mm 2 p h t 当剪力设计值V≤0.5h M 正弯矩作用区段 y r 即 但都假定为均匀受力 钢梁由于同时受弯 ) 2 n 部分抗剪连接组合梁计算简图 f p 2)塑性中和轴在钢梁截面内(图14.2.1-2) 抗弯计算时可以利用整个组合截面 完全抗剪连接组合梁的受弯承载力应符合下列规定 弯剪作用的相关曲线则用一段抛物线表示 计算部分抗剪连接组合梁在负弯矩作用区段的受弯承载力时 忽略钢筋混凝土翼板受压区中钢筋的作用 st u 2 f 2 M——正弯矩设计值(N·mm) ) v f c 14.2.3 ——组合梁塑性中和轴至钢梁塑性中和轴的距离 w 此外 f 组合梁设计 取连接件受剪承载力设计值之和n 即Af≤b A 并达到钢材的抗拉或抗压强度设计值 ) /(2t 为了保证部分抗剪连接的组合梁能有较好的工作性能 c1 将按单根钢梁计算 2 14.2.4 ——部分抗剪连接时最大正弯矩验算截面到最近零弯矩点之间的抗剪连接件数目 c 部分抗剪连接组合梁的受弯承载力计算公式 根据塑性中和轴的位置 y 2 混凝土受压区假定为均匀受压 1 对于正弯矩区组合梁截面不用考虑弯矩和剪力的相互影响 S ) c 组合梁的受剪强度应按本标准式(10.3.2)计算 1 y ——钢梁塑性中和轴(平分钢梁截面积的轴线)以上和以下截面对该轴的面积矩(mm 受负弯矩的组合梁截面 图14.2.1-1 取y ) 国内外的试验表明 2 w 完全抗剪连接组合梁是指混凝土翼板与钢梁之间抗剪连接件的数量足以充分发挥组合梁截面的抗弯能力 4 2 取决于最大弯矩截面到零弯矩截面之间抗剪连接件能够提供的总剪力 p c 时 实际上是考虑最大弯矩截面到零弯矩截面之间混凝土翼板的平衡条件 14.2 对于负弯矩区组合梁截面 可不对验算负弯矩受弯承载力所用的腹板钢材强度设计值进行折减 1 抗剪连接件必须具有一定的柔性 14.2.1 14.2.3 1 截面的极限抗弯承载能力会有所降低 M′——负弯矩设计值(N·mm) 可取y 2 剪作用 1 钢梁可能全部受拉或部分受压部分受拉 <V<V f st 当抗剪连接件的布置受构造等原因影响不足以承受组合梁剪跨区段内总的纵向水平剪力时 n 图14.2.2 st y c 1 y 位于塑性中和轴一侧的受拉混凝土因为开裂而不参加工作 f 可采用部分抗剪连接设计法 取钢梁拉压区交界处位置为组合梁塑性中和轴位置(mm) c1 等于钢梁塑性中和轴至腹板上边缘的距离(mm) 3 时 r 试验研究表明 14.2.1 4 如果竖向剪力设计值V等于竖向塑性受剪承载力V st 式中 即V=V 组合梁设计 不能再承担外荷载引起的弯矩 部分抗剪连接时连接件的数量不得少于按完全抗剪连接设计时该剪跨区内所需抗剪连接件总数n e =A 1-组合梁塑性中和轴 竖向剪力对受弯承载力的不利影响可以忽略 t c 和A 按照公式(10.3.2)计算组合梁的受剪承载力是偏于安全的 仍按本标准式(14.2.1-5)计算 是采用简化塑性理论按下列假定确定的 中的较小值 混凝土翼板等效矩形应力块合力的大小 h 塑性中和轴在钢梁内时的组合梁截面及应力图形 以致在截面的应变图中混凝土翼板与钢梁有各自的中和轴 对于单跨简支梁 通过对钢梁腹板强度的折减来考虑剪力和弯矩的相互作用 即理想的塑性状态 w st 但A 1)塑性中和轴在混凝土翼板内(图14.2.1-1) 不考虑组合作用 r 4 st 板托部分亦不予考虑 收缩与温度作用的影响 2 p ——每个抗剪连接件的纵向受剪承载力 式中 14.2.2 f 对于不满足此条件的情况如何考虑弯矩和剪力的相互影响没有给出相应设计方法 时 r p 可不考虑施工过程中有无支承及混凝土的徐变 v 组合梁设计可按简单塑性理论形成塑性铰的假定来计算组合梁的抗弯承载能力 当V>0.5h 验算负弯矩受弯承载力所用的腹板钢材强度设计值f按本标准第10.3.4条的规定计算 3 c ——如图14.2.2所示 1-组合截面塑性中和轴 w 3 v c 2 当该中和轴在钢梁翼缘内时 用弯矩调幅设计法计算组合梁强度时 两者中的较小值 ——钢梁受拉区截面形心至钢梁受压区截面形心的距离(mm) f) 2 受正弯矩的组合梁截面不考虑弯矩和剪力的相互影响 负弯矩作用区段(图14.2.1-3) A——钢梁的截面面积(mm w 部分抗剪连接组合梁在正弯矩区段的受弯承载力宜符合下列公式规定(图14.2.2) 作为混凝土翼板中的剪力 14.2 N S 14.2.4 图14.2.1-3 本次修订采用了欧洲组合结构设计规范EC4建议的相关设计方法 2-钢梁截面塑性中和轴 根据截面轴力平衡式(14.2.1-7)求出钢梁受压区面积A f c 应取n 2 ) 1 则钢梁腹板只用于抗剪 y 的一半 N N ——钢筋抗拉强度设计值(N/mm ——纵向钢筋截面形心至组合梁塑性中和轴的距离 v 按本标准第14.3节的有关公式计算(N) 即Af>b ——部分抗剪连接时组合梁截面正弯矩受弯承载力(N·mm) 负弯矩作用时组合梁截面及应力图形 图14.2.1-2 3 14.2.2 ——混凝土抗压强度设计值(N/mm v 取为最大负弯矩验算截面到最近零弯矩点之间的抗剪连接件数目 r e 连接件工作时全截面进入塑性状态 式中 进而确定组合梁塑性中和轴的位置(mm) ——负弯矩区混凝土翼板有效宽度范围内的纵向钢筋截面面积(mm 原规范只给出了不考虑弯矩和剪力相互影响的条件 y——钢梁截面应力的合力至混凝土受压区截面应力的合力间的距离(mm) 如果竖向剪力设计值V不大于竖向塑性受剪承载力V 当组合梁塑性中和轴在钢梁腹板内时 可按式(14.2.2-2)所示的轴力平衡关系式确定受压钢梁的面积A 在所计算截面左右两个剪跨内 f的50% 此时的设计弯矩由混凝土翼板有效宽度内的纵向钢筋和钢梁上下翼缘共同承担 即V≤0.5V 钢梁与混凝土翼板间产生相对滑移 连续组合梁的中间支座截面的弯矩和剪力都较大 p 时 时 在任一剪跨区内 x——混凝土翼板受压区高度(mm) ——钢梁受拉区截面形心至混凝土翼板受压区截面形心的距离(mm) 用塑性设计法计算组合梁最终承载力时