可按下列公式计算 本条第3款的计算公式采用在平面K形节点强度计算公式基础上乘以支管轴力比影响系数Q σ——节点两侧主管轴心压应力中较小值的绝对值(N/mm 本标准平面DY和DK形节点承载力设计值公式引自钢结构设计规范EC3 应分别按平面K形节点相应支管承载力设计值N 式(13.3.2-11)中β=(D 1-主管 cK 三支管均搭接(空间KT-Ov型) 反映了空间几何效应 采用本标准图13.2.4(a)加强板的节点承载力 3 T 4 1-主管 KT 统计分析表明 在隐蔽部位不焊的情况下 会造成承载力某种程度的降低 M fo 1-主管 f——主管钢材的抗拉 将CW 支管与主管外径及壁厚之比均不得小于0.2 图38表明 图13.3.2-4 —M 钢管相贯节点中连接主管与支管的焊缝截面实际为一空间曲面 拟合的空间KT形节点强度计算公式与试验数据和有限元数据的比较分别见表15和表16 2 ) T形(或Y形)受拉节点 单层网壳结构中的杆件 p1 2)受拉支管在管节点处的承载力设计值N 表中公式计算值所采用的钢材强度值为试验给出的钢材强度平均值 支管局部屈曲与主管管壁塑性的联合破坏 贯通支管受拉时平均降低13% TK 图39 —M 和空间调整系数μ 图13.3.2-8 of 2-支管 op 按式(13.3.9-7)计算(mm y 其间隙值a取为两斜杆的趾间距 cTT 可按没有竖杆的K形节点计算 ——节点两侧主管轴心压力的较小绝对值(N) 1-主管 所修正的计算公式与试验数据对比 ——支管在管节点处的轴心力(N) 不便于工程应用 13.3.5 同样显示了上述现象 540个节点有限元计算结果以及国际管节点数据库的资料为基础 以拉为正 ψ N 1 cKT W ——K形支管与T形支管的平面外搭接长度(mm) D 关系曲线 ) 平面K形搭接节点 ——支管壁厚(mm) 的方法 并将平截面假定不加证明地推广至该焊缝投影平面 综合考虑其变化规律以及规范的简洁性和设计的经济性 贯通支管受压相比贯通支管受拉 本次修订时 各无量纲几何参数对μ 空间TT形节点(图13.3.3-1) 计算时已将各规范中的强度设计值置换为钢材屈服值 KT ) 关于第1款~第3款 ) 同时 平面X形节点(图13.3.2-1) ——支管的横截面积(mm 支管轴线在主管横截面所在平面投影的夹角不得小于60° 焊缝承载力设计值M 1.18 国内大学进行了主管为向内弯曲 Q of X形节点 支管在节点处的承载力设计值不得小于其轴心力设计值 t——主管壁厚(mm) 按式(13.3.9-5)计算(mm 支管在平面内 Eurocode 1 式中 但国内对此研究不多 a 经回归分析得到K形搭接节点承载力计算公式 本条第1款~第3款基本沿用原规范第10.3.1条 n 这种降低要显著得多(贯通支管受压时平均降低4% 2-支管 表15 1 8 β 外弯矩和轴力组合作用下的承载力应按下式验算 N T形(或Y形)受压节点 计算 可以用加强板的厚度加上主管壁厚代入强度公式 无加劲直接焊接的平面节点 2-主管 +D 1 工程实践中出现了主管为圆管 0 图13.3.4-1 TK TK 4-被搭接支管内隐藏部分 M 其一 还包括搭接支管和贯通支管的搭接顺序 ≤0.2范围内 的取值 a 本条为原规范第10.3.2条的修改和补充 uo 对应于主管冲剪破坏模式的相贯节点受弯承载力计算公式的主要来源为CIDECT设计指南 采用本节进行计算时 以上各种形式的圆管节点与直线状的主管节点相比 圆管加强板的几何尺寸 iT 平面DY形节点(图13.3.2-6) 即n 荷载反对称平面DK形节点 图13.3.2-7 3 t τ 本条为新增条文 其中M 按式(13.3.9-10)计算(mm 日本建筑学会(AIJ)设计指南(1990)和欧洲钢结构设计规范EC3 ) 分别为组合荷载下支管平面外弯矩与节点仅受平面外弯矩作用时的极限承载力公式计算值 表18 2005) KT 对空间KT-Gap节点的空间调整系数μ K形支管搭接 M 可按下列公式计算 并非只有加强板在起作用 主管为方矩形钢管时 ——分别为T形支管和K形受压支管的轴力设计值 图13.3.3-2 空间KT形节点分类 表中破坏模式符号含义如下 通过调整搭接(间隙)关系参数 M 2-支管 5 乘以空间调整系数μ Design 2)受拉支管在管节点处的承载力设计值N TK 最大降低30%) KK 节点承载力平均高出4% X或K形间隙节点及其他非搭接节点中 同时搭接部位的存在也增大了约束主管管壁局部变形的刚度 支管为方(矩)形管的平面T a 节点极限承载力相差不超过5% tK 是如Eurocode3规程 本条在原规范的基础上增加了部分规定 TK tu ——截面a-a处主管轴力设计值(N) M X形节点 N形 W A Q 2 3 表17 略偏保守但不失经济性 structures(Eurocode 将支管全搭接型的KK形节点的空间调整系数采用不同于原规范的形式 2 steel 式中 本条补充了关于间隙a的取值规定 受压支管承载力 )/3D 当支管承受弯矩作用时(图13.3.4-1和图13.3.4-2) T形(或Y形)节点的平面内受弯与平面外受弯 t 平面T形(或Y形)节点(图13.3.2-2和图13.3.2-3) 为防止焊缝先于节点发生破坏 轴力比n 无加劲直接焊接的平面T T N ψ 但数据离散度较小 故规定焊缝承载力不应小于节点承载力 空间TT形节点 2-支管 KT Design 1-焊缝 TK 搭接节点的破坏模式主要为支管局部屈曲破坏 ——T形支管轴力与K形支管轴力比 对节点极限承载力的影响是独立的 13.3.6 国际管结构研究和发展委员会(CIDECT)公式的比较 对于空间KK-IPOv节点 ) 空间KT形节点承载力计算公式与有限元数据的比较 ——参数 杆件承载力 支管与主管的厚度比τ变化范围0.5~1.0 ) A 以同济大学11个搭接节点的单调加载试验 p1 分别为组合荷载下支管轴拉力与节点仅受轴拉力作用时的极限承载力公式计算值 建立空间坐标系x′y′z′[图43(a)] TW 为计算钢管相贯节点焊缝截面的几何特性 可按下列公式计算 非搭接管节点焊缝在平面内与平面外的抗弯截面模量分别为式(13.3.9-5)与式(13.3.9-10)的形式 支管轴力比影响系数Q Design 焊缝承载力与破坏模式的计算比较(如表20和表21所示 为简单计 与日本建筑学会(AIJ)公式 i 图13.3.4-2 修正时主要对照了新建立的国际管节点数据库中的试验结果 1-主管 钢结构设计规范EC3 当D 但数据离散度较大 2 m n 平面KT形节点计算公式(13.3.2-29) 支管仅受轴力作用时 ζ Y ——参数 平面KT形节点的冲剪验算 x 图13.3.2-5 Q KT′K 对图37中(b) 三支管间均有间隙(空间KT-Gap型) 13.3.3 支管为圆管时的焊缝承载力设计值应按下列规定计算 1 按式(13.3.2-11)计算 n 在平面外受弯承载力方面 2 隐蔽部位不焊 式中 θ=30°与θ=60°的节点承载力相比 TK 给出搭接节点的计算公式 ——平面外两支管的搭接长度(mm) 抗压和抗弯强度设计值(N/mm M 即 γ 图41 可将K形搭接节点分别记为CW 表19 是如ISO规程(草案) 倍 0 a为受压支管与受拉支管在主管表面的间隙 θ 对有间隙的KT形节点 f x 值均呈下降趋势 国内大学补充实施了新的试验 图13.3.2-6 摒弃了原来环模型计算公式(ft2) 应按下式计算 焊缝承载力不应小于节点承载力 支管在管节点处的平面外受弯承载力设计值M 3-贯通支管 N 而近年的工程实践表明这类形式的节点在空间桁架和空间网壳中并不少见 2005 为加强板厚度与主管壁厚的比值 其二 通过回归分析 的影响较大 W 为正 对主要计算公式和规定说明如下 1 RC fi 即图13.3.3-1的情况 空间KK形节点承载力计算公式与有限元计算结果的比较 的范围为[—1 Ov r 2-支管 本标准采用方法二 取ψ 2 a——两支管之间的间隙(mm) N 详见原规范条文说明第10.3.3条的条文说明表12最后2组数据 2 但并非如此前文献认为的那样 ) t 从图中可看出T形支管受轴压时更为不利 θ D f ) f 支管互相搭接处 ——支管的轴向力(N) 但是在管节点数据库中仍存在冲剪破坏的记录 1)受压支管在管节点处的承载力设计值N I 平面内弯矩作用下 表13 对应一侧的主管截面积(mm c 1 ≤D—2t时 应按下式计算 ——参数 r t 若承载力公式中与原规范相似地采用θ函数1/sinθ 2 图39~图42给出了不同荷载组合下试验值与相关方程曲线的比较 tX cDY ——主管轴向承载力设计值(N) 13.3.2 CW 设计中应考虑节点的抗弯计算 cK ) TK y1 对应于主管塑性破坏模式的受弯承载力公式拟合试验数据的统计分析 KT 空间KK形节点承载力计算公式与试验数据的比较 HSE与Eurocode 0p w 相关方程与试验数据的比较 式中 分三种情况规定了μ M 2 对应一侧的主管截面模量(mm 外边缘线则由主管外表面与半径为r 补充了空间TT形和KK形节点的计算规定 N 且需满足β 式中 有两种主要方法 TK ζ steel 1-主管 本次修订规定对这类节点进行支管在节点处的冲剪承载力补充验算 说明轴力比n 该公式能够较好地预测相贯节点的实际平面内受弯承载力 X形节点 其所受轴力往往小于K形支管轴力 BY-支管屈服 因此将节点效率表示为几何参数的函数 i 且在贯通支管受拉的情况下 式(13.3.2-30)来源于Eurocode3-1-8 cu x1 cK b 空间KT形圆管节点(图13.3.3-3 节点变形达到3% 在分析管节点数据库相关数据和对照同济大学实施的试验基础上 节点尚应按下式进行冲剪计算 2-支管 支管与主管的连接焊缝可视为全周角焊缝进行计算 Eurocode的计算方公式是依据各支管垂直于主管轴线的竖向分力合力为零的假定 2-支管 ——受压支管的截面面积(mm 有少数数据点越界 TN四种类型的搭接节点承载力的变化如图36所示 相关方程与试验数据的比较 1 13.3.2 5-内隐蔽部分 ——主管钢材抗剪强度设计值(N/mm 节点承载力设计值取相应未加强时节点承载力设计值的(0.23τ N 目前平面DY和DK形节点已经应用于网架 可按下列公式计算 平面内弯矩 用按本标准图13.2.4(a)加强板的节点承载力是无加强时节点承载力的1.13τ 1-支管 图38 N 图38显示了空间KT形节点极限承载力比值N ——平面K形节点中受拉支管承载力设计值(N) 其中r tK 有限元参数分析结果表明 支管与主管的连接焊缝可视为全周角焊缝进行计算 n o ——X形节点中受压支管极限承载力设计值(N) 3-1-8 θ——主支管轴线间小于直角的夹角 ——支管壁厚(mm) 角焊缝的计算厚度沿支管周长取0.7h 根据搭接节点的破坏模式 88版规范对平面X 图13.3.3-1 ——T形支管与主管的直径比 τ 1)受压支管在管节点处的承载力设计值N c M M j 3 ——主管剪切承载力设计值(N) ——空间调整系数 在隐蔽部位焊接的情况下 2 这类结构采用无加劲直接焊接节点时 μ 分别为试验测得的节点平面内与平面外受弯承载力 1-主管 即采用N γ 6 2 根据回归分析 η 但当竖杆受拉力时 第4款~第8款为新增条款 ζ CN 图36 t 1-主管 TW 从表17中的对比可以看出 第10.3.3条 n 根据近300个各类型管节点的承载力极限值试验数据 x1 1997)中认为 der n 当节点两侧或者一侧主管受拉时 q 而API规范和日本标准则认为两者权重相同 ) 13.3.6 根据图13.3.3-4的支管搭接方式分别取值 /N 本标准关于非搭接管连接焊缝在平面内与平面外弯矩作用下的强度计算公式是采用空间解析几何原理 原规范没有空间KT形圆管节点强度计算公式 1 在此基础上考虑可靠度后得到本次标准修订公式 且计算异常繁琐 应按下式进行补充验算 仅按式(13.3.2-28)计算 2-支管 f——支管钢材的强度设计值(N/mm 经数值计算与回归分析后提出的 还可能遇到图37所示另3种典型情况 ——焊脚尺寸(mm) d X形相贯节点受弯承载力设计值公式 TK 其均值和置信区间都较之前更加合理 cX 1)K形受压支管在管节点处的承载力设计值N KTT形 然后采用校准法换算得到的 方差和离散度 )的函数形式 最大降低11% 非搭接管连接焊缝在轴力作用下的强度计算公式(13.3.9-1)~式(13.3.9-3)沿用原规范的有关规定 因此 e 4-弦杆外壁 图37 基本可以忽略 但制订原规范时所依据的管节点数据库和国内大学试验研究的空间KK形节点都是间隙节点 根据计算结果回归分析 2 1 +D —M 为负 13.3.8 主管为圆钢管的节点 角焊缝的计算厚度沿支管周长取0.7h of β 式中 c 无斜腹杆的桁架(空腹桁架) ——焊缝有效截面的平面内抗弯惯性矩 根据搭接顺序的不同(C—贯通支管受压 平面K形间隙节点 —M 钢管节点关于x-o-z平面对称 支管在节点处的冲剪承载力设计值N 无加劲直接焊接的空间节点 v 标准修订公式拟合试验数据的统计分析结果列于表17中 反映了荷载效应 t——主管壁厚(mm) 2-支管 X形节点矩形支管-圆形主管连接节点公式计算值与试验结果的比较 ——主管钢材的抗剪强度设计值(N/mm TK AIJ相关公式在所有情况下都是偏于安全 ) 表中还列出了欧洲钢结构设计规范EC3 r 有限元分析表明 i 当竖杆不受力 在节点处 4-被搭接支管 其中N w 空间KT形节点承载力计算公式与试验数据的比较 表示支管受压 详见原规范条文说明第10.3.3条 1-主管 ζ f 空间KK形节点分类 根据对称性原理 2 i 采用校验过的模型对T形连接的极限承载力进行了数值计算 分析国外有关规范和国内外有关资料的基础上 o 本条公式引自欧洲钢结构设计规范EC3 平面K形圆钢管搭接节点承载力设计公式计算结果与相关试验数据的比较 的70% Design f 使得主管连接面所承受的作用力相对减小 的 I 1-主管 t 节点形式有平面K形 1-主管 TK 应按下列公式计算 (即Q 按式(13.3.9-6)计算(mm) 将焊缝有效截面的形成方式假定如下 大致相同 μ σ和v分别表示公式计算值与试验值之比的均值 计算表明 图42 M n ——支管的宽度(mm) 同时承受轴力和弯矩作用 RC 应按下式计算 ——焊缝有效截面的平面内抗弯模量 4 从安全和简化出发 API公式与试验结果最为接近 si 0p ——节点与N 其中N ——参数 =d/2+0.7h 空间KK形节点(图13.3.3-2) tK 支管在管节点处的平面内受弯承载力设计值M 应按下列公式计算(图13.3.4-2) T 4-搭接支管 为焊脚尺寸h cKK KT′K Vegte公式与试验结果差别较大 与实验数据和有限元计算数据的对比分别见表13和表14 倍 其中图37(d)的情况为支管全搭接型 0.59 其余情况则仍采用0.9 参考Eurocode3-1-8的规定给出相关计算公式 1 3 steel structures认为平面内弯矩对节点组合荷载作用下承载力的影响较平面外弯矩小 =f(β 平面DK形节点 ——两支管的横向间隙 q 此外 本标准公式计算值与四种类型搭接节点有限元数据的对比 f 表13给出了本标准公式计算值与相关试验数据的对比 ——支管的平面内高度(mm) 由于各规范公式考虑了一定的承载力安全储备 X形节点 节点承载力平均高6% 科学出版社 T 平面节点的失效模式由主管管壁塑性控制 ——参数 A——主管截面面积(mm 搭接支管沿搭接边与被搭接支管相焊 13.3.1 当T形节点焊缝截面边缘相贯线在x′oy′平面的投影近似为椭圆时 n ——支管轴线与主管表面相交处的平面外弯矩(N·mm) 可采用本标准第13.3.2条和第13.3.4条所规定的计算公式进行承载力计算 i 13.3.4 关于第8款 4 考虑的节点参数包括β变化范围0.5~0.8 X形节点和有间隙的K t 以压为负(N) 相关方程与试验数据的比较 0 structures(Eurocode3-1-8 的关系曲线 表16 KT 13.3.3 N 计算也表明 其构件承受的弯矩在设计中是不可忽略的 本标准将其归为圆钢管节点 支管为方矩形管的情况 13.3.8 本条为新增条文 支管沿周边与主管相焊 节点承载力设计值取相应未加强时节点承载力设计值的1.13τ 平均仅2.4% N 相同的节点 2 Y N W——与N cK1 ——支管在管节点处的承载力设计值 J.A.Packer在《空心管结构连接设计指南》(曹俊杰译 2005) τ 3-焊缝截面 表13 N形节点需进行冲剪承载力计算 KK形 图13.3.2-1 两支管中垂直于主管的内力分量可相互平衡一部分 f——主管钢材的抗拉 经对所收集的近70个管节点的极限承载力 ——K形支管与T形支管的平面外间隙(mm) f r 1 13.3.1 受压支管轴力-节点变形曲线达到峰值 取μ +1)倍 cK 仅有个别数据点越界 3 -0.68 T形和K形节点处主管强度的支管轴心承载力设计值的公式是比较 N N—不焊) 无论其均值还是置信区间都更加合理 应按下列公式计算 HSE公式与试验结果最为接近 ——K形节点支管承载力设计值 ≤1 在n t 有较大影响 f 对于几何尺寸不同但轴力比n structuresEurocode3公式和日本建筑学会(AIJ)公式的相应比较结果 均无显著影响 表20 θ=45°与θ=60°的节点承载力相比 标准修订时直接采用了AIJ公式的形式 θ 相关方程与试验数据的比较 且不得大于120° N 且不得大于1.0 3相关公式在大多数情况下是安全的 角焊缝有效截面的计算厚度h c 且需满足η 是加强板厚度与主管壁厚的比值 3-搭接支管 Y structures(Eurocode3-1-8 cT 变化较小 支管在节点处的承载力应按下列规定计算 2)受拉支管在管节点处的承载力设计值N 其他参数则可不予考虑 ≤4 uo 2 ≥0.4 N KT′K 13.3.7 3公式比试验结果低 式中 ui 无论主管轴线向内还是向外弯曲 给出与间隙节点完全不同的计算公式 加强板和主管分担支管传递的内力 i f 主管呈弯曲状的平面或空间圆管焊接节点 可取对称面一侧结构施加总荷载的一半进行研究 原规范修订时 T—贯通支管受拉)和隐蔽部位是否焊接(W—焊接 j 所以计算值均低于节点实际承载力 应按下式计算 N tK 7 支管轴向屈服破坏等三种模式 面外弯矩共同作用下试验值代入各相关公式中的计算结果 =1 假设焊缝截面符合平截面假定 ——支管的高度与主管直径的比值 本标准将其归为方钢管节点 ——支管在其轴线与主管表面相交处的平面外弹性抗弯截面模量(mm r N ) 对于节点有限元分析结果 i 国外有若干试验数据发表 0.59 W 根据近160个管节点的受弯承载力极限值试验数据 X形节点的平面内受弯与平面外受弯 i 式中 cX 13.3 13.3.5 圆钢管直接焊接节点和局部加劲节点的计算 2-支管 0p 对平面节点承载力计算公式进行了若干修正 Y形节点平面外受弯实测承载力与公式计算值的比较 y1 式中 式中 steel 其中 相关方程与试验数据的比较 ——参数 ) 目前国外各规程中均将搭接节点的承载力计算公式特别列出 c 式中 n f 因而可以不计算主管管壁冲剪破坏 式中 )与T形支管轴力比n ——支管在其轴线与主管表面相交处的平面内弹性抗弯截面模量(mm 平面外弯矩设计值(N·mm) 但与T形支管间有间隙(空间KT-IPOv型) (c) 无斜腹杆的桁架(空腹桁架) 抗压和抗弯强度设计值(N/mm N 提高幅度均在10%以内 网壳结构中 β 当其他参数相同时 n o N 向外弯曲和无弯曲(直线状)的圆管焊接节点静力加载对比试验共15件 i 支管在管节点处的承载力应按下列公式验算 CPS-主管冲剪 Q M KT′K 本条为新增条文 平面KT形(图13.3.2-9) c f -n 节点受力性能没有大的差别 v 平 荷载正对称平面DK形节点 -0.68 ——支管的宽度与主管直径的比值 CN 平面KT形节点 如图43(a)所示 圆钢管连接节点应符合下列规定 图13.3.2-2 =1.0 通过研究节点几何参数对节点效率的影响 uo 1.18 1-主管 则难以准确反映θ的影响 1 T形节点 式中 表14 ) 焊缝截面的简化 0 而前3种情况称为支管非全搭接型 Y oT 支管在节点处的承载力设计值不得小于其轴心力设计值 平面K形间隙节点(图13.3.2-4) 无量纲参数β 2 图13.3.3-3 以下述两个准则中最先达到的一个准则决定节点的极限承载力 四支管同时受压时 本标准公式计算值(95%保证率)与四种类型搭接节点有限元数据的对比见图36 ) 表18还给出了节点在轴力 o 国际管结构研究和发展委员会(CIDECT)公式相比 T fo ui CC-主管表面焊趾裂纹) fi ——平面K形节点中受压支管承载力设计值(N) —1≤n c 本条沿用原规范第10.3.3条的一部分 0 而API-LRFD相关公式相对来说安全度稍低 2 13.3.9 TW 值大体为1 n 13.3.7 ——受拉支管轴线与主管轴线的夹角 非搭接支管与主管的连接焊缝可视为全周角焊缝进行计算 当支管受拉时 因此 式中 3 ) 可能对节点受压的计算偏于不安全 可以看出 3 规范修订时 可以保证静力荷载下焊缝验算公式的适用性 of ui 选定f(β j 将焊缝曲面投影至x’oy’平面 上述公式的比较表明 说明T形支管轴力增大导致节点极限承载力降低 在建立K形搭接节点承载力公式时 TK TN四种类型的搭接节点承载力计算公式统一 空间KK形节点 )×A ——参数 其中τ 3 CLD-主管塑性 A——与N =0(即T形支管轴力为0)的空间KT型节点中K形 a 图13.3.2-3 对比了各国规范对于节点在弯矩与轴力共同作用下的承载力相关方程 N +1)倍 i of f η API公式次之 主管径厚比2γ变化范围36~50 n 2-水平面 是无加强时节点承载力的(0.23τ 式中 KT 平面外弯矩作用下 5-内隐蔽部分 ——受拉支管的截面面积(mm 本条第3款适用于这种条件下的节点计算 r <—0.2或n 近年来 Y 由式(13.3.2-11)计算 平面内弯矩 13.3.4 n h 节点承载力应按下列规定计算 以θ=60°节点的承载力数据作为基础 焊缝承载力设计值M 0p 应按下式计算 tKK ——分别为主管和支管的外径(mm) 焊缝有效截面的内边缘线即为主管与支管外表面的相贯线 (d)三种形式节点的极限承载力进行分析 贯通支管受拉相比贯通支管受压 2-支管 t 角焊缝的计算厚度沿支管周长取0.7h 平均提高约20% 空间KT形节点 并考虑了公式表达的合理性 根据节点形式按本标准第13.3.2条的规定计算(N) 关于第4款K形搭接节点中 θ 为此在上述公式的基础上提出了以下未考虑强度折减的相贯节点平面内受弯承载力计算公式 考虑了可靠度与安全系数后得出了主管和支管均为圆管的平面T Q 见表19 或N 支管在管节点处的承载力设计值N 3 M 13.3 ) 为相同几何尺寸但轴力比n 主管采用本标准第13.2.4条第1款外贴加强板方式的节点 2-支管 T(Y) 1-主管 fo 或N 对于空间KT-Ov节点 图13.3.3-4) Y形节点平面内受弯实测承载力与公式计算值的比较 当支管受拉时 13.3.9 根据同济大学的研究成果 Design 关于第5款和第6款 N l 1 实际工程中T形支管一般不是主要受力构件 2005)要求T 应按下列公式计算 还假定主管与支管的连接焊缝可视为全周角焊缝进行抗弯计算 影响K形搭接节点性能的因素除几何参数外 3 β 1)受压支管在管节点处的承载力设计值N 研究表明 当支管按仅承受轴力的构件设计时 —M 因支管搭接与否有多种组合 ——焊缝的计算长度(mm) 以及轴线弯曲曲率半径R与主管直径d之比变化范围12~110 RC o 对应一侧的主管平面内弯矩绝对值(N·mm) 为空间KT型节点中K形受压支管承载力 o 3 应用有限元分析方法对节点进行了弹塑性分析 分别为组合荷载下支管轴压力与节点仅受轴压力作用时的极限承载力公式计算值 平面外弯矩不应大于下式规定的抗冲剪承载力设计值 隐蔽部分焊接与否等 当支管受压时 考虑到实际工程中θ<45°的情况相对少见 当主管曲率半径R≥5m且主管曲率半径R与主管直径D之比不小于12时 2-支管 除了对K形节点考虑搭接影响之外未作进一步改动(本条第1款~第3款) q ) >0.2范围内 M 其余情况按式(13.3.2-3)计算 由于主管对加强板有约束 2 通过回归分析归纳得出的承载力极限值经验公式 ——主管钢材的屈服强度(N/mm sinθ 焊缝承载力设计值N N ——角焊缝的强度设计值(N/mm ——焊缝有效截面的平面外抗弯模量 V 1] 其平面内与平面外抗弯的有效截面惯性矩分别按式(64)与式(65)计算 原规范修订时 按所提出的计算公式和试验数据比较 ) 分别为根据公式计算得到的节点平面内与平面外受弯承载力 T 除全间隙节点外 经与日本建筑学会(AIJ)公式 据此校验了有限元模型 γ 3 按式(13.3.2-6)或式(13.3.2-7)计算 图40 应按下列公式计算 Q 按式(13.3.9-12)计算(mm 与国内大学的试验资料相比较 f WF-焊缝断裂 η 表21 ——参数 ——焊缝有效截面的平面外抗弯惯性矩 2 1 单层网壳等结构 的公式形式 Ov Van 平面DY形节点 空间TT形 表示T形支管受拉 考虑到这类破坏发生的可能性 CN Q 3-被搭接支管 在—0.2≤n 式中 ——参数 TK 两受压支管在管节点处的承载力设计值N ——受压支管轴线与主管轴线的夹角 ψ 研究发现 2 1 本条补充了按式(13.3.2-30)进行计算的规定 在平面内受弯承载力方面 主管轴线弯曲曲率半径R变化范围5m~35m RC 当支管按仅承受轴心力的构件设计时 X形和有间隙的K 提高幅度不等 2 2-支管 h 2 当竖杆受压力时 fi 关于第7款 而工程实践中 f 2-搭接支管 且同支管共轴线的圆柱面相贯形成 主支管轴线间的夹角不得小于30° 保持与K形间隙节点公式的连续性 圆钢管直接焊接节点和局部加劲节点的计算 在分析国外有关规范和国内外有关资料的基础上 图13.3.2-9 本条为新增条文 分别为组合荷载下支管平面内弯矩与节点仅受平面内弯矩作用时的极限承载力公式计算值 tTT 式中 不受节点几何参数变化的影响 1-主管 图13.3.3-4 CY-主管屈服 ——支管轴线与主管表面相交处的平面内弯矩(N·mm) 当支管受压时 仅有少数几例试验 但离散度较大 由于搭接节点的破坏主要发生在支管而非主管上 表17给出了对各国受弯承载力规范公式拟合试验数据的统计分析结果 受压或受拉支管在空间管节点处的承载力设计值N TN四种类型 i 近年来的搭接节点试验和有限元分析结果均表明 图43 本次标准修订时 steel ψ —M 应按下列公式计算 是反映T形支管所受轴力相对大小的一个参数 与平面圆钢管连接节点的主管壁塑性破坏模式相比有很大差别 1)荷载正对称节点(图13.3.2-7) A ——支管轴力比影响系数 1-主管 平面K形搭接节点(图13.3.2-5)