1 主管径厚比2γ变化范围36~50 X或K形间隙节点及其他非搭接节点中 2-支管 ) ) ——参数 tK 式中 X形节点 o 5-内隐蔽部分 —M ——支管在管节点处的轴心力(N) ——节点与N w ——参数 所修正的计算公式与试验数据对比 0p 空间KK形节点承载力计算公式与试验数据的比较 tX 焊缝承载力设计值M 2-支管 ) 0 有限元参数分析结果表明 受压支管承载力 空间KT形节点分类 1997)中认为 图13.3.2-5 给出搭接节点的计算公式 分别为根据公式计算得到的节点平面内与平面外受弯承载力 ——分别为主管和支管的外径(mm) +1)倍 γ 贯通支管受拉相比贯通支管受压 c cT 3相关公式在大多数情况下是安全的 TN四种类型的搭接节点承载力计算公式统一 变化较小 ——支管在其轴线与主管表面相交处的平面外弹性抗弯截面模量(mm 本标准平面DY和DK形节点承载力设计值公式引自钢结构设计规范EC3 本条第3款适用于这种条件下的节点计算 应按下式计算 y 经数值计算与回归分析后提出的 ——焊脚尺寸(mm) 将CW 假设焊缝截面符合平截面假定 最大降低11% 但当竖杆受拉力时 基本可以忽略 τ 按式(13.3.9-12)计算(mm σ——节点两侧主管轴心压应力中较小值的绝对值(N/mm 支管在节点处的承载力设计值不得小于其轴心力设计值 通过回归分析归纳得出的承载力极限值经验公式 ——K形节点支管承载力设计值 RC 焊缝承载力设计值M 若承载力公式中与原规范相似地采用θ函数1/sinθ TK 图13.3.2-4 平面K形搭接节点 f——支管钢材的强度设计值(N/mm 本条为新增条文 W 5 x 式中 1)受压支管在管节点处的承载力设计值N 1 对于节点有限元分析结果 这类结构采用无加劲直接焊接节点时 N Q tK ζ 应按下列公式计算 3 为防止焊缝先于节点发生破坏 日本建筑学会(AIJ)设计指南(1990)和欧洲钢结构设计规范EC3 D 摒弃了原来环模型计算公式(ft2) (即Q 考虑了可靠度与安全系数后得出了主管和支管均为圆管的平面T )×A T形节点 cK )/3D ——X形节点中受压支管极限承载力设计值(N) N 规范修订时 钢管相贯节点中连接主管与支管的焊缝截面实际为一空间曲面 Design f η n 2-搭接支管 图13.3.3-1 N M RC 说明T形支管轴力增大导致节点极限承载力降低 13.3.8 1-主管 f 3 13.3.4 0p ——受压支管的截面面积(mm 其构件承受的弯矩在设计中是不可忽略的 支管在管节点处的承载力应按下列公式验算 T形和K形节点处主管强度的支管轴心承载力设计值的公式是比较 无论其均值还是置信区间都更加合理 sinθ 应按下列公式计算 略偏保守但不失经济性 当D η 其中τ t——主管壁厚(mm) ) K形支管搭接 N 倍 AIJ相关公式在所有情况下都是偏于安全 TK D 隐蔽部位不焊 n 2 1-主管 有两种主要方法 且需满足β KT′K 平均提高约20% 4-被搭接支管 按式(13.3.9-6)计算(mm) ——分别为T形支管和K形受压支管的轴力设计值 h 平面K形间隙节点 ——截面a-a处主管轴力设计值(N) 表18还给出了节点在轴力 i 支管为方(矩)形管的平面T 节点承载力设计值取相应未加强时节点承载力设计值的(0.23τ 以θ=60°节点的承载力数据作为基础 c 平面KT形节点 X形节点的平面内受弯与平面外受弯 且不得大于1.0 2)受拉支管在管节点处的承载力设计值N 其均值和置信区间都较之前更加合理 N t q ui 图38显示了空间KT形节点极限承载力比值N 1.18 分三种情况规定了μ 图13.3.2-1 f 应按下式计算 f 目前平面DY和DK形节点已经应用于网架 p1 空间KK形节点分类 θ 支管互相搭接处 ——参数 支管局部屈曲与主管管壁塑性的联合破坏 ) 当支管受压时 x1 i 所以计算值均低于节点实际承载力 平面外弯矩作用下 平面内弯矩 分别为试验测得的节点平面内与平面外受弯承载力 2 2 ≤D—2t时 通过调整搭接(间隙)关系参数 选定f(β uo 图13.3.4-1 n Q 为加强板厚度与主管壁厚的比值 由于各规范公式考虑了一定的承载力安全储备 j 方差和离散度 式中 3 T—贯通支管受拉)和隐蔽部位是否焊接(W—焊接 KT 可按没有竖杆的K形节点计算 但数据离散度较大 n 本条第1款~第3款基本沿用原规范第10.3.1条 平面KT形(图13.3.2-9) 三支管均搭接(空间KT-Ov型) i 3 值大体为1 i 2005)要求T f 支管为圆管时的焊缝承载力设计值应按下列规定计算 节点尚应按下式进行冲剪计算 —M 支管轴线在主管横截面所在平面投影的夹角不得小于60° 从表17中的对比可以看出 单层网壳等结构 关于第4款K形搭接节点中 M Y形节点平面内受弯实测承载力与公式计算值的比较 是如Eurocode3规程 TK 原规范没有空间KT形圆管节点强度计算公式 对节点极限承载力的影响是独立的 三支管间均有间隙(空间KT-Gap型) 空间TT形 还可能遇到图37所示另3种典型情况 l 2 ) ≤1 β d API公式次之 ) 13.3.7 1 的 详见原规范条文说明第10.3.3条 空间KK形节点 对于几何尺寸不同但轴力比n 图13.3.2-9 t M 2-支管 图13.3.3-3 在隐蔽部位焊接的情况下 是如ISO规程(草案) 其二 0p 2 f i 0 的范围为[—1 Y 平面外弯矩不应大于下式规定的抗冲剪承载力设计值 将焊缝曲面投影至x’oy’平面 X形节点 Q 给出与间隙节点完全不同的计算公式 -0.68 角焊缝有效截面的计算厚度h 目前国外各规程中均将搭接节点的承载力计算公式特别列出 steel o 抗压和抗弯强度设计值(N/mm 其一 在平面外受弯承载力方面 其中图37(d)的情况为支管全搭接型 平面K形搭接节点(图13.3.2-5) 加强板和主管分担支管传递的内力 角焊缝的计算厚度沿支管周长取0.7h c 平面DK形节点 6 13.3 当支管受拉时 M 除全间隙节点外 但离散度较大 式中 取μ ≥0.4 ——焊缝有效截面的平面内抗弯模量 无加劲直接焊接的空间节点 对空间KT-Gap节点的空间调整系数μ 2 其所受轴力往往小于K形支管轴力 关于第1款~第3款 steel 关于第7款 按式(13.3.9-10)计算(mm T 其余情况按式(13.3.2-3)计算 采用校验过的模型对T形连接的极限承载力进行了数值计算 (d)三种形式节点的极限承载力进行分析 杆件承载力 4-搭接支管 w 是反映T形支管所受轴力相对大小的一个参数 不便于工程应用 ——K形支管与T形支管的平面外间隙(mm) ) 影响K形搭接节点性能的因素除几何参数外 节点受力性能没有大的差别 a 2-支管 主支管轴线间的夹角不得小于30° 4 1 为计算钢管相贯节点焊缝截面的几何特性 ≤0.2范围内 在—0.2≤n 3-贯通支管 但并非如此前文献认为的那样 而API-LRFD相关公式相对来说安全度稍低 荷载正对称平面DK形节点 外边缘线则由主管外表面与半径为r 两支管中垂直于主管的内力分量可相互平衡一部分 j TN四种类型的搭接节点承载力的变化如图36所示 主管为方矩形钢管时 o 考虑到这类破坏发生的可能性 隐蔽部分焊接与否等 13.3.6 f Van uo 支管与主管的连接焊缝可视为全周角焊缝进行计算 国内大学补充实施了新的试验 n HSE与Eurocode 拟合的空间KT形节点强度计算公式与试验数据和有限元数据的比较分别见表15和表16 2 根据回归分析 支管在管节点处的平面内受弯承载力设计值M 可按下列公式计算 N 表中公式计算值所采用的钢材强度值为试验给出的钢材强度平均值 c 1 —M 13.3.5 将支管全搭接型的KK形节点的空间调整系数采用不同于原规范的形式 搭接支管沿搭接边与被搭接支管相焊 可以看出 考虑到实际工程中θ<45°的情况相对少见 1 贯通支管受压相比贯通支管受拉 TK W 主管呈弯曲状的平面或空间圆管焊接节点 cKK 或N 平面外弯矩设计值(N·mm) 表13 即图13.3.3-1的情况 Y形节点平面外受弯实测承载力与公式计算值的比较 A——与N r 应按下列公式计算(图13.3.4-2) t ) 当竖杆受压力时 cX 由于主管对加强板有约束 2 a 1-主管 ——主管钢材的屈服强度(N/mm ) 以及轴线弯曲曲率半径R与主管直径d之比变化范围12~110 of 式中 支管在管节点处的平面外受弯承载力设计值M 仅按式(13.3.2-28)计算 焊缝承载力设计值N f 见表19 面外弯矩共同作用下试验值代入各相关公式中的计算结果 v 关于第8款 3 非搭接管连接焊缝在轴力作用下的强度计算公式(13.3.9-1)~式(13.3.9-3)沿用原规范的有关规定 大致相同 e 并非只有加强板在起作用 1-主管 -n W——与N 因支管搭接与否有多种组合 仅有个别数据点越界 A ——支管的高度与主管直径的比值 3 ) 原规范修订时 1-主管 非搭接管节点焊缝在平面内与平面外的抗弯截面模量分别为式(13.3.9-5)与式(13.3.9-10)的形式 M =f(β A 节点极限承载力相差不超过5% 对于空间KT-Ov节点 13.3 第10.3.3条 1-主管 M 13.3.1 t n 5-内隐蔽部分 of 在隐蔽部位不焊的情况下 第4款~第8款为新增条款 Eurocode的计算方公式是依据各支管垂直于主管轴线的竖向分力合力为零的假定 因而可以不计算主管管壁冲剪破坏 γ 从图中可看出T形支管受轴压时更为不利 N形 T 角焊缝的计算厚度沿支管周长取0.7h ψ 经回归分析得到K形搭接节点承载力计算公式 ——主管钢材抗剪强度设计值(N/mm ——节点两侧主管轴心压力的较小绝对值(N) ζ 式(13.3.2-11)中β=(D 与实验数据和有限元计算数据的对比分别见表13和表14 对图37中(b) 保持与K形间隙节点公式的连续性 其中r h 即 N 空间KT形节点承载力计算公式与试验数据的比较 国内大学进行了主管为向内弯曲 工程实践中出现了主管为圆管 当竖杆不受力 表21 式中 API公式与试验结果最为接近 非搭接支管与主管的连接焊缝可视为全周角焊缝进行计算 本条补充了按式(13.3.2-30)进行计算的规定 有少数数据点越界 CW 1 Q X形节点和有间隙的K n iT 1 x 支管轴力比影响系数Q r TK 根据近160个管节点的受弯承载力极限值试验数据 按式(13.3.9-7)计算(mm N 在节点处 2-支管 N 3 详见原规范条文说明第10.3.3条的条文说明表12最后2组数据 支管与主管的连接焊缝可视为全周角焊缝进行计算 空间KK形节点承载力计算公式与有限元计算结果的比较 2-支管 1)受压支管在管节点处的承载力设计值N 两受压支管在管节点处的承载力设计值N 而API规范和日本标准则认为两者权重相同 f N 提高幅度不等 对平面节点承载力计算公式进行了若干修正 2 平面T形(或Y形)节点(图13.3.2-2和图13.3.2-3) 还假定主管与支管的连接焊缝可视为全周角焊缝进行抗弯计算 ——焊缝有效截面的平面外抗弯惯性矩 2-水平面 的70% tK ——焊缝有效截面的平面内抗弯惯性矩 图13.3.3-2 式中 TK 平面KT形节点的冲剪验算 fo 相同的节点 steel 本标准公式计算值与四种类型搭接节点有限元数据的对比 CLD-主管塑性 I t =1 WF-焊缝断裂 表14 标准修订时直接采用了AIJ公式的形式 其间隙值a取为两斜杆的趾间距 2 fo -0.68 表17给出了对各国受弯承载力规范公式拟合试验数据的统计分析结果 应按下列公式计算 平面DY形节点(图13.3.2-6) 13.3.5 540个节点有限元计算结果以及国际管节点数据库的资料为基础 分别为组合荷载下支管平面外弯矩与节点仅受平面外弯矩作用时的极限承载力公式计算值 式中 单层网壳结构中的杆件 受压支管轴力-节点变形曲线达到峰值 在分析国外有关规范和国内外有关资料的基础上 空间TT形节点 )的函数形式 η KK W 1-主管 相关方程与试验数据的比较 Design N 当主管曲率半径R≥5m且主管曲率半径R与主管直径D之比不小于12时 2-支管 Q TK 贯通支管受拉时平均降低13% 2)受拉支管在管节点处的承载力设计值N ) 以拉为正 ——支管在管节点处的承载力设计值 of 会造成承载力某种程度的降低 图13.3.3-4) 3 当节点两侧或者一侧主管受拉时 图42 外弯矩和轴力组合作用下的承载力应按下式验算 2 structures认为平面内弯矩对节点组合荷载作用下承载力的影响较平面外弯矩小 焊缝承载力不应小于节点承载力 应按下式计算 cK 有较大影响 RC 搭接节点的破坏模式主要为支管局部屈曲破坏 2005) 抗压和抗弯强度设计值(N/mm W 按式(13.3.9-5)计算(mm 支管在节点处的承载力设计值不得小于其轴心力设计值 图40 角焊缝的计算厚度沿支管周长取0.7h 然后采用校准法换算得到的 3公式比试验结果低 RC 图13.3.2-2 支管仅受轴力作用时 CY-主管屈服 图13.3.2-7 f 根据图13.3.3-4的支管搭接方式分别取值 修正时主要对照了新建立的国际管节点数据库中的试验结果 式(13.3.2-30)来源于Eurocode3-1-8 2 ——平面K形节点中受压支管承载力设计值(N) 可采用本标准第13.3.2条和第13.3.4条所规定的计算公式进行承载力计算 TK 为空间KT型节点中K形受压支管承载力 of 计算也表明 ——参数 cTT ——受拉支管的截面面积(mm T a——两支管之间的间隙(mm) T形(或Y形)受压节点 )与T形支管轴力比n n 图13.3.3-4 ) o 各无量纲几何参数对μ 13.3.3 研究发现 实际工程中T形支管一般不是主要受力构件 支管在节点处的冲剪承载力设计值N 空间KT形节点承载力计算公式与有限元数据的比较 ——参数 ≤4 此外 以压为负(N) 同时 其中M >0.2范围内 钢结构设计规范EC3 本标准将其归为圆钢管节点 为此在上述公式的基础上提出了以下未考虑强度折减的相贯节点平面内受弯承载力计算公式 2 TK θ=30°与θ=60°的节点承载力相比 4-被搭接支管内隐藏部分 当支管按仅承受轴力的构件设计时 ——T形支管轴力与K形支管轴力比 13.3.2 X形节点 3-搭接支管 当T形节点焊缝截面边缘相贯线在x′oy′平面的投影近似为椭圆时 ——焊缝的计算长度(mm) r M i 3 tu —M 3 t ) j 的取值 t 应按下式计算 Design Design r 平面K形间隙节点(图13.3.2-4) 其中 13.3.7 2 表示支管受压 ) 除了对K形节点考虑搭接影响之外未作进一步改动(本条第1款~第3款) 应按下列公式计算 而前3种情况称为支管非全搭接型 3 Design b x1 平面K形圆钢管搭接节点承载力设计公式计算结果与相关试验数据的比较 2005 由于搭接节点的破坏主要发生在支管而非主管上 而近年的工程实践表明这类形式的节点在空间桁架和空间网壳中并不少见 fi f ——参数 本条补充了关于间隙a的取值规定 KT 式中 β 根据搭接节点的破坏模式 1-主管 但制订原规范时所依据的管节点数据库和国内大学试验研究的空间KK形节点都是间隙节点 i ——参数 i n 0.59 是无加强时节点承载力的(0.23τ 对比了各国规范对于节点在弯矩与轴力共同作用下的承载力相关方程 θ 2-支管 r 7 1-主管 建立空间坐标系x′y′z′[图43(a)] 本标准采用方法二 关于第5款和第6款 钢管节点关于x-o-z平面对称 荷载反对称平面DK形节点 且需满足η 且计算异常繁琐 ——支管在其轴线与主管表面相交处的平面内弹性抗弯截面模量(mm 而工程实践中 以上各种形式的圆管节点与直线状的主管节点相比 1 —M 圆钢管直接焊接节点和局部加劲节点的计算 为简单计 ——平面K形节点中受拉支管承载力设计值(N) 按所提出的计算公式和试验数据比较 M 1)荷载正对称节点(图13.3.2-7) 图37 根据搭接顺序的不同(C—贯通支管受压 ——支管轴线与主管表面相交处的平面外弯矩(N·mm) 平均仅2.4% 3 13.3.3 KT N 采用本标准图13.2.4(a)加强板的节点承载力 与平面圆钢管连接节点的主管壁塑性破坏模式相比有很大差别 (c) ——角焊缝的强度设计值(N/mm 国际管结构研究和发展委员会(CIDECT)公式的比较 2 近年来的搭接节点试验和有限元分析结果均表明 图13.3.4-2 i steel v 1 ——支管壁厚(mm) 在建立K形搭接节点承载力公式时 2-支管 ψ =1.0 表中破坏模式符号含义如下 式中 表13给出了本标准公式计算值与相关试验数据的对比 图13.3.2-6 uo 应用有限元分析方法对节点进行了弹塑性分析 最大降低30%) θ ——T形支管与主管的直径比 cu 图36 1 从安全和简化出发 本标准公式计算值(95%保证率)与四种类型搭接节点有限元数据的对比见图36 ψ 通过研究节点几何参数对节点效率的影响 节点承载力设计值取相应未加强时节点承载力设计值的1.13τ θ 1-主管 f 如图43(a)所示 M 焊缝截面的简化 KT 应按下式计算 式中 根据同济大学的研究成果 图39 Ov TK 当支管按仅承受轴心力的构件设计时 经对所收集的近70个管节点的极限承载力 σ和v分别表示公式计算值与试验值之比的均值 2-支管 y1 反映了荷载效应 四支管同时受压时 c 2 但是在管节点数据库中仍存在冲剪破坏的记录 ——支管的宽度与主管直径的比值 图13.3.2-3 平面内弯矩作用下 应按下式进行补充验算 N 本标准关于非搭接管连接焊缝在平面内与平面外弯矩作用下的强度计算公式是采用空间解析几何原理 ) 可以保证静力荷载下焊缝验算公式的适用性 J.A.Packer在《空心管结构连接设计指南》(曹俊杰译 ——K形支管与T形支管的平面外搭接长度(mm) 本次修订规定对这类节点进行支管在节点处的冲剪承载力补充验算 国外有若干试验数据发表 主管为圆钢管的节点 节点形式有平面K形 I 统计分析表明 M 2 可按下列公式计算 13.3.6 无量纲参数β 但数据离散度较小 c 考虑的节点参数包括β变化范围0.5~0.8 t——主管壁厚(mm) 空间KK形节点(图13.3.3-2) N—不焊) 图39~图42给出了不同荷载组合下试验值与相关方程曲线的比较 本条为新增条文 相关方程与试验数据的比较 式中 fo 使得主管连接面所承受的作用力相对减小 T 可以用加强板的厚度加上主管壁厚代入强度公式 13.3.4 t +D ——主管钢材的抗剪强度设计值(N/mm 2)受拉支管在管节点处的承载力设计值N 式中 据此校验了有限元模型 2 但与T形支管间有间隙(空间KT-IPOv型) cDY TK 计算时已将各规范中的强度设计值置换为钢材屈服值 在此基础上考虑可靠度后得到本次标准修订公式 则难以准确反映θ的影响 0.59 TK 分析国外有关规范和国内外有关资料的基础上 用按本标准图13.2.4(a)加强板的节点承载力是无加强时节点承载力的1.13τ 相关方程与试验数据的比较 的公式形式 本条为新增条文 N a 1 n 均无显著影响 因此将节点效率表示为几何参数的函数 的关系曲线 并将平截面假定不加证明地推广至该焊缝投影平面 无斜腹杆的桁架(空腹桁架) 无斜腹杆的桁架(空腹桁架) 分别为组合荷载下支管平面内弯矩与节点仅受平面内弯矩作用时的极限承载力公式计算值 ——支管轴力比影响系数 分别为组合荷载下支管轴拉力与节点仅受轴拉力作用时的极限承载力公式计算值 c 分别为组合荷载下支管轴压力与节点仅受轴压力作用时的极限承载力公式计算值 还包括搭接支管和贯通支管的搭接顺序 structures(Eurocode3-1-8 2005) structuresEurocode3公式和日本建筑学会(AIJ)公式的相应比较结果 ——受压支管轴线与主管轴线的夹角 无论主管轴线向内还是向外弯曲 由式(13.3.2-11)计算 1)受压支管在管节点处的承载力设计值N 研究表明 Q 在n 不受节点几何参数变化的影响 V TW 1-主管 1.18 μ T 倍 可按下列公式计算 支管在节点处的承载力应按下列规定计算 X形节点矩形支管-圆形主管连接节点公式计算值与试验结果的比较 可取对称面一侧结构施加总荷载的一半进行研究 a T形(或Y形)节点的平面内受弯与平面外受弯 <—0.2或n ) 取ψ ——支管的平面内高度(mm) 且同支管共轴线的圆柱面相贯形成 op 图38表明 +1)倍 cK +D TW CC-主管表面焊趾裂纹) 原规范修订时 =0(即T形支管轴力为0)的空间KT型节点中K形 N 2-支管 1 μ 空间KT形节点 对于空间KK-IPOv节点 本条在原规范的基础上增加了部分规定 根据近300个各类型管节点的承载力极限值试验数据 ζ 同时搭接部位的存在也增大了约束主管管壁局部变形的刚度 1 故规定焊缝承载力不应小于节点承载力 对有间隙的KT形节点 本条为原规范第10.3.2条的修改和补充 N 支管在管节点处的承载力设计值N der γ 0 1-主管 图13.3.2-8 表17 网壳结构中 1-支管 cKT 向外弯曲和无弯曲(直线状)的圆管焊接节点静力加载对比试验共15件 KT τ 在分析管节点数据库相关数据和对照同济大学实施的试验基础上 fi 空间KT形圆管节点(图13.3.3-3 圆钢管直接焊接节点和局部加劲节点的计算 τ ——支管轴线与主管表面相交处的平面内弯矩(N·mm) 可将K形搭接节点分别记为CW 其平面内与平面外抗弯的有效截面惯性矩分别按式(64)与式(65)计算 表18 i 计算表明 有限元分析表明 这种降低要显著得多(贯通支管受压时平均降低4% Q tK 表15 Vegte公式与试验结果差别较大 13.3.1 ——焊缝有效截面的平面外抗弯模量 平 表中还列出了欧洲钢结构设计规范EC3 8 圆管加强板的几何尺寸 KT′K i 13.3.9 相关方程与试验数据的比较 的影响较大 X形相贯节点受弯承载力设计值公式 2 —M TK 按式(13.3.2-11)计算 参考Eurocode3-1-8的规定给出相关计算公式 Y 3 且不得大于120° 支管与主管的厚度比τ变化范围0.5~1.0 N 根据计算结果回归分析 1-主管 3-1-8 M KT 当支管受拉时 f——主管钢材的抗拉 N ——受拉支管轴线与主管轴线的夹角 平面DY形节点 其中N 补充了空间TT形和KK形节点的计算规定 对应一侧的主管截面模量(mm 主管采用本标准第13.2.4条第1款外贴加强板方式的节点 tTT 支管在平面内 应分别按平面K形节点相应支管承载力设计值N 对主要计算公式和规定说明如下 其他参数则可不予考虑 平面内弯矩 但国内对此研究不多 N 当支管受压时 KT′K 的方法 structures(Eurocode ui 表16 相关方程与试验数据的比较 1)K形受压支管在管节点处的承载力设计值N structures(Eurocode3-1-8 支管与主管外径及壁厚之比均不得小于0.2 N形节点需进行冲剪承载力计算 支管沿周边与主管相焊 对应于主管塑性破坏模式的受弯承载力公式拟合试验数据的统计分析 根据对称性原理 同样显示了上述现象 TW 节点变形达到3% ——两支管的横向间隙 tKK 表19 图41 0 f——主管钢材的抗拉 n TK 空间TT形节点(图13.3.3-1) 本条公式引自欧洲钢结构设计规范EC3 或N fi 4-弦杆外壁 为正 N ) 1-焊缝 N Y 国际管结构研究和发展委员会(CIDECT)公式相比 乘以空间调整系数μ a为受压支管与受拉支管在主管表面的间隙 0p oT 本条第3款的计算公式采用在平面K形节点强度计算公式基础上乘以支管轴力比影响系数Q 因此 在平面内受弯承载力方面 CN 3-焊缝截面 f n 可按下列公式计算 仅有少数几例试验 对应一侧的主管平面内弯矩绝对值(N·mm) 0 科学出版社 表20 f M 支管为方矩形管的情况 Ov 2-支管 轴力比n 按式(13.3.2-6)或式(13.3.2-7)计算 主管轴线弯曲曲率半径R变化范围5m~35m 13.3.9 ——平面外两支管的搭接长度(mm) CPS-主管冲剪 2-支管 y1 cK1 ——主管轴向承载力设计值(N) ——支管的宽度(mm) 表13 KK形 上述公式的比较表明 ——支管壁厚(mm) 1] ζ 是加强板厚度与主管壁厚的比值 与国内大学的试验资料相比较 1 4 并考虑了公式表达的合理性 本标准将其归为方钢管节点 值均呈下降趋势 其中N 经与日本建筑学会(AIJ)公式 3-被搭接支管 和空间调整系数μ 为负 当其他参数相同时 采用本节进行计算时 T q CN si ——主管剪切承载力设计值(N) 圆钢管连接节点应符合下列规定 同时承受轴力和弯矩作用 ——支管的横截面积(mm 13.3.8 节点承载力平均高出4% 式中 式中 θ——主支管轴线间小于直角的夹角 88版规范对平面X ——参数 of 反映了空间几何效应 ——支管的轴向力(N) 因此 设计中应考虑节点的抗弯计算 式中 为焊脚尺寸h t 将焊缝有效截面的形成方式假定如下 Eurocode 本条为新增条文 m 且在贯通支管受拉的情况下 说明轴力比n 根据节点形式按本标准第13.3.2条的规定计算(N) 通过回归分析 本次修订时 /N CN 1-主管 ui =d/2+0.7h 与日本建筑学会(AIJ)公式 β —1≤n A steel 节点承载力应按下列规定计算 KT ——空间调整系数 标准修订公式拟合试验数据的统计分析结果列于表17中 X形和有间隙的K 以下述两个准则中最先达到的一个准则决定节点的极限承载力 支管轴向屈服破坏等三种模式 其余情况则仍采用0.9 即采用N 2-主管 β 本次标准修订时 对应一侧的主管截面积(mm 平面KT形节点计算公式(13.3.2-29) 即n 近年来 1 ——参数 2 o ) 2-支管 HSE公式与试验结果最为接近 ψ T(Y) 平面节点的失效模式由主管管壁塑性控制 本条沿用原规范第10.3.3条的一部分 无加劲直接焊接的平面T 2 以同济大学11个搭接节点的单调加载试验 q 关系曲线 BY-支管屈服 表示T形支管受拉 4 焊缝承载力与破坏模式的计算比较(如表20和表21所示 焊缝有效截面的内边缘线即为主管与支管外表面的相贯线 当支管承受弯矩作用时(图13.3.4-1和图13.3.4-2) 图38 为相同几何尺寸但轴力比n 式中 o 平面X形节点(图13.3.2-1) 可能对节点受压的计算偏于不安全 提高幅度均在10%以内 θ=45°与θ=60°的节点承载力相比 无加劲直接焊接的平面节点 Y 图43 T形(或Y形)受拉节点 该公式能够较好地预测相贯节点的实际平面内受弯承载力 Y KTT形 1-主管 13.3.2 应按下列公式计算 A——主管截面面积(mm 受压或受拉支管在空间管节点处的承载力设计值N KT′K TN四种类型 2 ) 节点承载力平均高6% X形节点 cX 综合考虑其变化规律以及规范的简洁性和设计的经济性 计算 cK n 对应于主管冲剪破坏模式的相贯节点受弯承载力计算公式的主要来源为CIDECT设计指南 p1 M r