h——大端截面上 可用γ 有效宽度系数ρ应按下列公式计算 ——分别为斜梁翼缘和腹板的厚度(mm) ——檩条截面绕强轴的惯性矩(mm 大于2的稳定系数较小 ) 当柱的最大弯矩不出现在大端时 宽度范围内的腹板面积 等截面构件的等效弯矩系数β 高宽比以2为界 的形式 除应按现行国家标准《钢结构设计规范》GB X h 另外受弯时局部屈曲后有效宽度系数ρ和考虑屈曲后强度的剪切屈曲稳定系数φ 1 6 在斜梁负弯矩区取1.0 7.1.2 b 本条的确定有如下考虑 7.1.6 b M 焊接构件的稳定系数低于热轧构件 因此进行较大修改 ——弯矩比 式中 在弹性阶段失稳时 轴力项也取自大端 λ β——截面边缘正应力比值(图7.1.1) 式(7.1.4-2)中的指数与截面高宽比发生关系 ) 本条采用的相关公式 W = s 弹性屈曲临界弯矩应按下列公式计算 w ——计算截面的腹板高度(mm) ——腹板受压区有效宽度(mm) 按本条第2款计算 1y M——集中荷载作用处的弯矩(N·mm) λ 变截面刚架梁的稳定性应符合下列规定 ) ——构件有效截面最大受压纤维的截面模量(mm 1)梁腹板利用屈曲后强度时 y 新的公式与原分段的表达式的对比见图2 取1.1 热轧构件纯弯时 楔形柱按本规范附录A规定的计算长度系数由现行国家标准《钢结构设计规范》GB w 腹板有效宽度的分布 ——分别为板边最大和最小应力 当斜梁上翼缘承受集中荷载处不设横向加劲肋时 A e 小于2的稳定系数较高 应按下列公式计算 为抗力分项系数 ——弯矩较大截面的受压翼缘宽度和上 1 7.1.5 h 取1.0 f 计算长度取h 1)在屋面斜梁的两侧均设置隅撑(图7.1.6) w t 按现行国家标准《钢结构设计规范》GB ) ) R d 取k η 2002规程的等效弯矩系数β V 偏不安全 图 式中 λ 代替式(7.1.1-3)中的f 受压有关的参数 参数λ 4 取三倍隅撑间距范围内的梁段的应力比 又避免了特定区域的不安全 ——腹板的高度(mm) φ ——变截面梁的等效翘曲惯性矩(mm I h p 7 2 2 分别取最大弯矩和该弯矩所在截面的有效截面模量 根据理论分析 τ N 虽然可能可以作为屋面斜梁的平面外侧向非完全支撑 2 2 h f 按本规范第7.1.4条计算 变截面柱在刚架平面内的稳定应按下列公式计算 |≤|σ 隅撑支撑梁的稳定系数应按本规范第7.1.4条的规定确定 斜梁和隅撑的设计 EC3规定 s ——与檩条连接的翼缘绕弱轴的惯性矩(mm ——腹板的高度(mm) 这里参照了CECS102 e 1 这与欧洲钢结构设计规范EC3的规定类似 式中 ——分别是小端截面上 图 构件设计 当σ M 屋面斜梁的隅撑 0 f M 取1.0或与平面内欧拉临界荷载发生关系且接近于1 ——腹板剪切屈曲稳定系数 1 2)当验算加劲肋稳定性时 弹性屈曲临界弯矩应按下列公式计算 yT w1 在通用长细比为0.4时稳定系数已经是1.0 i s 0 w0 工字形截面受弯构件在剪力V和弯矩M共同作用下的强度 t 应按下列公式计算 l A 1 并符合下列规定 因此k M μ——柱计算长度系数 剪切屈曲系数和屈曲后强度采用的计算方法是在等截面区格的公式上乘以一个楔率折减系数 1 2 e1 m N w —1≤β≤1 ——腹板屈曲后抗剪强度的楔率折减系数 f ——大端的有效截面面积(mm 腹板高度变化的区格 尚应承受拉力场产生的压力 考虑屈曲后强度时 本条特别强调隅撑不能作为梁的固定的侧向支撑 3 为较小弯矩除以较大弯矩 γ 不合理 2 应考虑隅撑作为檩条的实际支座承受的压力对屋面斜梁下翼缘的水平作用 式中 式中 ——拉力场产生的压力(N) i C w a——檩条截面形心到梁上翼缘中心的距离(mm) ——腹板受压区宽度(mm) 按现行国家标准《钢结构设计规范》GB ——轴心受压构件弯矩作用平面外的稳定系数 yB 应满足下列公式要求 本条第5款特别加以规定 屋面斜梁的平面外计算长度取两倍檩距 ——楔形变截面梁段的整体稳定系数 a——加劲肋间距(mm) λ kk s <f时 ——大端的弯矩设计值(N·mm) x ——计算截面的翼缘厚度(mm) tx 50017查得 η 弯矩项的指数在1.0~1.6之间变化 这一应力比作为参数 单面隅撑 ) 应取最大受压翼缘侧向支承点间的距离 7.1.3 h L——梁段平面外计算长度(mm) 弯扭失稳的二阶效应只与弯矩大小等有关 ——所计算构件段大端截面的弯矩(N·mm) y 小于这个长细比 ——腹板受剪承载力设计值(N) 7.1 对楔形腹板取板幅平均高度 并验算每段的平面外稳定 2-钢梁 ≤1.0 0 3 ——隅撑的间距(mm) p 4 ) 按本条第6款的规定采用 是规定一个起始的长细比 J 在特定的区域会偏于不安全 1 y w 从CECS102 σ I I ——腹板的厚度(mm) 3-隅撑 R I γ——变截面梁楔率 2)隅撑的上支承点的位置不低于檩条形心线 和W 另外弯矩放大系数从 确定计算长度时可考虑各段间的相互约束 2 h C 这样对弯矩的折减很大 绕弱轴惯性矩和翘曲惯性矩(mm N 也可用于类似情况 λ 构件设计 压弯杆的平面外计算长度通常取侧向支承点之间的距离 板幅的长度与板幅范围内的大端截面高度相比不应大于3 1 尚应满足下列公式要求 xη 下翼缘受压的屋面斜梁的平面外计算长度可考虑隅撑的作用 7.1.1 M 稳定系数等于1 所以就有了k β M ——大端弯矩(N·mm) c 注 7.1.1 ) i b mx W 2 弯矩M和轴压力N共同作用下的强度 5 ——檩条的截面面积(mm 梁腹板应在与中柱连接处 该压力应按下列公式计算 sT0 t I ——弯矩最大截面受压翼缘和受拉翼缘绕弱轴的惯性矩(mm φ 应设置横向加劲肋 图7.1.1 ——楔形变截面梁弹性屈曲临界弯矩(N·mm) p e φ 当斜梁两翼缘侧向支承点间的距离不等时 研究发现 ——惯性矩比 W 承受线性变化弯矩的楔形变截面梁段的稳定性 4 屋面斜梁和檩条之间设置的隅撑满足下列条件时 ——小端截面自由扭转常数 M J s 4 刚架构件的强度计算和加劲肋设置应符合下列规定 计算长细比时取大端截面的回转半径 1 ——楔形腹板大端和小端腹板高度(mm) t ——翼缘厚度(mm) y σ mx A 当不设横向加劲肋时 ——梁的通用长细比 ≤1.0 隅撑支撑的梁的计算长度不小于2倍隅撑间距 7 ) ——弯矩较大截面受压边缘的截面模量(mm λ λ 取1.0 A 式中 ——小端和大端截面的毛截面面积(mm ρ——有效宽度系数 3 N 便于退化成等截面的公式 1 实腹式刚架斜梁在平面内可按压弯构件计算强度 b0 A wη 式中 e ——被隅撑支撑的翼缘绕弱轴的惯性矩(mm 2 ) t ) 图3 ) ps 式中 研究表明 4 k ——小端截面压应力除以大端截面压应力得到的比值 ——小端弯矩(N·mm) e1 这是不对的 f 下翼缘中面间的距离(mm) N ——大端截面的自由扭转常数 下翼缘中面之间的距离(mm) 2 e1 ——有效截面面积(mm 是重要的参数 下翼缘中面之间的距离(mm) t 3 ——与板件受剪有关的参数 2 小端截面应验算轴力 ——大端有效截面最大受压纤维的截面模量(mm ——兼承压力N时两翼缘所能承受的弯矩(N·mm) 图4 M 式中 ——小端截面的翘曲惯性矩(mm ——大端截面绕弱轴的回转半径(mm) 考虑屈曲后强度 1y 4 1 ≤2.75 k 1 s w 不能充分地给梁提供侧向支撑 ) A =W φ ) ——截面不对称系数 τ 更重要的是应力比k 按本规范式(7.1.1-15)计算 受压区有效宽度应按下式计算 按本规范式(7.1.1-10)计算 式中 2 b y1 λ 但是在弹塑性阶段 J R 2 其受剪承载力设计值应按下列公式计算 1 会略微变小 式中 按本规范附录A计算 I ——腹板区格的楔率 f 变截面柱的平面外稳定应分段按下列公式计算 σ 因为前者使得弯矩放大偏小很多 CECS102 ) λ 但是其副作用很严重 x 且|σ h 1 3 γ tx β——隅撑与檩条的连接点离开主梁的距离与檩条跨度的比值 I 变截面梁的稳定性 4 ——构件有效截面所承担的弯矩(N·mm) h 似乎已成了一个默认的选项 ——有效截面最大受压纤维的截面模量(mm 不能单独作为屋面斜梁的侧向支承 4 7.1.6 ——绕弱轴的通用长细比 为大 但是剪切屈曲稳定系数的公式做了连续化处理 M ——腹板的厚度(mm) 7.1.3 w 实腹式刚架斜梁的平面外计算长度 t ) H——柱高(mm) 应设置侧向支撑或隅撑 ——腹板厚度(mm) x1 50017的规定验算腹板上边缘正应力 w 则隅撑的支撑作用相对越弱 h ——变截面梁绕弱轴惯性矩(mm h 0 4 m ——隅撑杆的截面面积(mm 2 变截面托梁(抽柱引起)的稳定性计算 α e ——参数 因为实际框架柱的两端弯矩往往引起双曲率弯曲 e sB0 即大端截面 下翼缘的中面到剪切中心的距离(mm) e——隅撑下支撑点到檩条形心线的垂直距离(mm) M 在平面外应按压弯构件计算稳定 弯矩和剪力共同作用下的强度 φ 应按下列规则分布(图7.1.1) 隅撑单面布置时 α——隅撑和檩条轴线的夹角(°) ——截面塑性开展系数 ——所计算构件段大端截面的轴压力(N) | x1 1 3 本条专门为房屋抽柱而增设的托梁进行稳定性计算而制定的(图4) β 以便能够退化成等截面构件 屋面斜梁的强度和稳定性计算宜考虑其影响 I t 而仅仅是弹性支座 工字形截面压弯构件在剪力V ——通用长细比 1 V——梁受剪承载力设计值(N) 1 σ 以简化规范的书写 本条取消了中国工程建设标准化协会标准《门式刚架轻型房屋钢结构技术规程》CECS102 1 支承在屋面斜梁上翼缘的檩条 λ 1 将小于0.65 p ——稳定系数 γ 1 1 4 7.1.4 f φ 应满足下列公式要求 b 计算λ ——绕弱轴的长细比 ——构件翼缘的截面面积(mm 50017的规定取值 3 计算长度取纵向柱间支撑点间的距离 p ——隅撑杆的长度(mm) 2 1 其截面应包括每侧15t 式中 f ——杆件轴心受压稳定系数 =5.34η 剪应力和局部压应力共同作用时的折算应力外 t w 对楔形变截面构件 ) e 压弯杆的平面外稳定 ——腹板的厚度(mm) 当实腹式刚架斜梁的下翼缘受压时 E——柱钢材的弹性模量(N/mm 相关曲线外凸 G——斜梁钢材的剪切模量(N/mm 4 ) ——等效弯矩系数 刚架构件计算 2002(以下简称CECS102 M 等效于考虑弯矩变号对稳定性的有利作用 6 2 ——与板件受弯 屋面梁如果不设隅撑 ——杆件在正应力作用下的屈曲系数 0 1 y 图7.1.6 M ——变截面梁等效圣维南扭转常数 l 3 有侧移刚架柱的等效弯矩系数β 有明确的侧向支承点 f 2 k ——两翼缘所承担的弯矩(N·mm) 应按有效宽度计算截面特性 7 ) h 3 σ 其中k 7.1.2 楔率γ取三倍隅撑间距计算 I 2002规程)中要求腹板高度变化不超过每米60mm的限制 α——区格的长度与高度之比 7.1 梁下翼缘面积越大 ——等效弯矩系数 σ ——受剪板件的屈曲系数 W cr e 2 2002规程的三段式改为连续的公式 ρ>1.0时 对Q235和Q345钢 腹板有效宽度h l 当不能满足时 若各段线刚度差别较大 小端应力比 工字形截面构件腹板的受剪板幅 考虑计算长度系数的长细比 ——梁截面的剪切中心到檩条形心线的距离(mm) 因此取在0.3处作为稳定系数等于1.0的终止点 tap ) ——大端的轴向压力设计值(N) 侧向支承点之间的区段稳定性按照本条计算 计算长度就越大 其中间加劲肋除承受集中荷载和翼缘转折产生的压力外 y 50017的规定采用 2002规程的规定修改为轴力和弯矩采用同一个截面 7.1.5 ——欧拉临界力(N) ——檩条的跨度(mm) α w ) 较大集中荷载作用处和翼缘转折处设置横向加劲肋 ——大端截面绕强轴的回转半径(mm) I 应符合下列规定 w0 1-檩条 k A e ——柱钢材的屈服强度值(N/mm ) 7.1.4 3)符合对隅撑的设计要求 应取侧向支承点间的距离 式中 ——小端截面上 F——上翼缘所受的集中荷载(N) ) p E——斜梁钢材的弹性模量(N/mm 2 5 cr σ β 2002规程 σ ≤1.0 ——钢材抗剪强度设计值(N/mm k 当工字形截面构件腹板受弯及受压板幅利用屈曲后强度时 ——腹板剪切屈曲通用高厚比 ——按大端截面计算的 如何考虑其副作用 板件屈曲后强度利用应符合下列规定 以大端为准 2 刚架构件计算 本条将CECS102 1 γ 曲线外凸 只是更加细致了 s 有设计人员因此而认为隅撑可以间隔布置 φ k