roof 无量纲 i·max 其中佛甲草种植屋面的附加热阻是根据热工测量得出 改良土(湿密度为750kg/m 屋面内表面最高温度限值 水面宜有水浮莲等浮生植物或白色漂浮物 空气层厚度不宜小于0.1m 单面设置热反射材料的空气间层 通风屋面的风道长度不宜大于10m 其中 屋面隔热可采用下列措施 2 表6.2.1 分别取两类土的样品材料 宜在夏季多风地区采用 可采用有热反射材料层(热反射涂料 5 种植屋面的保温隔热层应选用密度小 屋 植被层可以假设为零 2 宜采用浅色外饰面 2 种植屋面的布置应使屋面热应力均匀 过滤层 2 常用的排(蓄)水层材料有两类 6 在给定两侧空气温度及变化规律的情况下 可采用淋水被动蒸发屋面 可采用蓄水屋面 植被层的可选植物丰富 i k 7 如通风屋面中的导风檐口 3 铝箔等)的空气间层隔热屋面 考虑到南方地区冬季降雨的影响 种植土的导热系数用1.2进行修正 本规范附录B表B.7.1是根据植被特征 6.2.3 种植材料层的蓄热系数应按本规范附录表B.7.2-1取值计算 在气候相同条件下屋面内表面平均辐射温度大于外墙内表面平均辐射温度 ·K/W) 6.2 种植屋面的热阻和热惰性指标可按下列公式计算 面 ——一种植屋面各种绿化植被层的附加热阻(m 对室内热环境影响更大 2 A 陶粒按30%含湿量给出导热系数和蓄热系数参考值 ——屋面构造层各层热阻(m 屋面基层应做保温隔热层 但应注意因地制宜 D 为了保证种植屋面的隔热效果 塑料排(蓄)水板和陶粒 种植材料层的导热系数应按本规范附录B表B.7.2-1取值计算 3 8 roof ——种植屋面各种绿化植被层在屋面上的覆盖面积(m 水深宜为0.15m~0.2m 2 ——绿化构造层各层热阻(m 1 排(蓄)水层的热阻(导热系数)应按本规范附录B表B.7.2-2取值计算 导热系数小 ~650kg/m 本条为强制性条文 是由于屋面所受到的太阳辐射比外墙更大 夏季植被层的隔热效果主要受植被冠层茂密程度的影响 有效水分为45%) 式中 ——屋面构造层各层热惰性指标 通风平屋面风道口与女儿墙的距离不应小于0.6m R 所提出的几种屋面隔热措施 未覆土部分的屋面应采取保温隔热措施使其热阻与覆土部分接近 无量纲 绿化屋面进行计算时应加入植被层和种植覆土等的附加热阻 3 测量其含水量符合要求的材料导热系数和蓄热系数 土层表面蒸发的作用归入植被层的附加热阻中 有效水分为37%)和无机复合种植土(450kg/m ) 6.2 雨水进入土层后会使屋面热损失增加30%左右 蓄水屋面和植被屋面 热反射材料应设在温度较高的一侧 A——种植屋面的面积(m 因此屋面绿化植被层的附加热阻采用各种植被层的附加热阻按面积加权平均计算 宜采用通风隔热屋面 采用带通风空气层的金属夹芯隔热屋面时 ·K/W) 面 6.2.3 6.2.1 6.2.4 应用于屋面绿化的种植土有两类 排(蓄)水层等 6.2.2 R 宜采用种植屋面 3 所以将屋面的内表面最高温度限值在外墙基础上提高了0.5℃ 作为本规范附录B表B.7.2-1中夏季参考值 R 屋面内表面最高温度应符合表6.2.1的规定 把屋面内表面最高温度作为控制围护结构隔热性能的强制性条文给予规定 屋面的内表面温度比外墙的内表面温度更难控制 种植构造层包括种植土层 根据现行行业标准《种植屋面工程技术规程》JGJ k 在给定两侧空气温度及变化规律的情况下 155 并且不一定覆盖整个屋面 经测试和实际应用证明行之有效 其中 夏两季考虑 应分别计算各层热阻 6.2.1 ) 使用时应加强管理等 适当采用 3 其中凹凸型排(蓄)水板与屋面形成空气层 屋 植被层有减少种植层表面空气流动的作用 2 应按本规范附录C第C.3节的规定计算 无量纲 各种植被层的作用有差别 冬季植物处于休眠状态 4 soil 宜采用带老虎窗的通气阁楼坡屋面 热容方面 j 具有空气层热阻 ·K/W) 有些措施隔热效果显著 green 檐口处宜采用导风构造 soil 通风间层高度应大于0.3m D 6.2.4 吸水率低的保温隔热材料 种植情况和茂密程度给出附加热阻参考值 6.2.5 避免屋面出现较大的热应力差 ·K/W) 减少热桥 ~1300kg/m 屋面内表面最高温度θ 压缩强度大 而且屋面内表面的表面放热系数还小于外墙内表面 R——种植屋面热阻(m 热反射膜 j 排(蓄)水层的蓄热系数应按本规范附录表B.7.2-2取值计算 应按本规范附录B表B.7.1的规定取值 6.2.5 i D——种植屋面热惰性指标 本规范附录B表B.7.2-2给出了相应的热工参数值 ——绿化构造层各层热惰性指标 对屋面未覆土部分的热工性能作出了规定 各种植被层的附加热阻分冬