K 支管阻力) a 对今后的发展留有较大余地 ——小时高峰系数 对工业用户和燃气汽车用户宜按第6.2.3条计算 因此采用旧钢管的K值 上海市的情况界于上述两城市之间 式中 在计算机技术得到广泛应用的今天已经不难解决 它是普朗特半经验理论发展到工程应用阶段的产物 Q 又如沈阳是沿用旧的管网 低压管道总压力降取值 ——年燃气用量(m 且使做饭时间加长 6.2.6 取K=0.1mm较合适 的600/800=75% 制管工艺 6.2.5 m 现将原苏联建筑法规推荐的数值列如表27 这样更加符合实际情况 在我国的《家用燃气灶具标准》GB 本规范对人工煤气使用钢管时取K=0.15mm 燃具的这种性能 在附录C中列出了原规范中的阿里特苏里公式 从我国有关部门对居民用的人工煤气 管材存放年限和条件等诸多因素使摩阻系数值增大的影响 但不少代表提出 液化石油气燃具所做的测定表明 居民生活和商业用户用气的高峰系数 庭院管和室内管中的分配 为800Pa时 式中 6.2.3 d——管道内径(mm) 阿氏公式和柯式公式比较偏差值在5%以内 由于用户在不断的增加 比天然气容易造成污塞和腐蚀 n n 表28 室内外燃气设备设计规范》对低压燃气管道的计算压力降规定如表25 ——燃气小时计算流量(m 在规范的正文中作这样的改变 34中有关热负荷的规定 燃气管道计算流量和水力计算 反映管道材质 燃具前的最低压力为600Pa 公式中的当量粗糙度K 是能基本满足用户使用要求的 ——从调压站到最远燃具的管道允许阻力损失(Pa) 6.2.4 几个城市低压管道压力降(Pa) 对我国的一般情况参照原苏联建筑法规 /a) 其总压力降约为燃具额定压力的90% 故可采用《城市热力网设计规范》CJJ 《原苏联建筑法规》规定的低压燃气管道压力降分配表(Pa) 由低压分配管网供应到户就是这种情况 次高压和中压燃气管道的单位长度摩擦阻力损失 h 高压 由于所接用具的种类和数量一般为已知 因低压燃气管道的计算压力降必须根据民用燃气灶具压力允许的波动范围来确定 =0.75P h 计算月中的日最大用气量和该月日平均用气量之比 本条以柯列勃洛克公式替代原来的阿里特苏里公式 1990年的燃气设计规范专题报告中 低压管道压力情况如表26 表27 n kPa) ——273.15(K) λ——燃气管道摩擦阻力系数 在一年中也仅仅是在计算月的高峰时出现 L——燃气管道的计算长度(km) n——年燃气最大负荷利用小时数(h) 计算月的日平均用气量和年的日平均用气量之比 经分析研究确定 低压燃气管道的计算压力降(Pa) 柯氏公式是至今为世界各国在众多专业领域中广泛采用的一个经典公式 34有关热负荷规定并考虑燃气采暖通风和空调的热效率折算确定 应按计算月的小时最大用气量计算 ~1.5P 可按国家现行的标准《城市热力网设计规范》CJJ 2 n 当燃气压力小于1.2MPa(表压)时 -0.75P 燃具额定压力P 燃烧器的性能达到燃具质量标准的要求 低压燃气管道压力降分配参考表(Pa) 6.2.8 输送气体的质量 约为P 沈阳较高 4 国内几个有代表性城市低压燃气管道计算压力降的情况见表24 燃气管道计算流量和水力计算 ~1.5P Q——燃气管道的计算流量(m 应按式(6.2.6-1)计算 这是迫不得已采取的一种措施 应当补充说明的是 根据本条规定 其压力降为900Pa 6.2 小时用气负荷资料确定 6.2 日 宜按每个独立用户生产的特点和燃气用量(或燃料用量)的变化情况 P 而且这只是对距调压站最远用户而言 K 施工焊接 给出一些形式简单便于计算的显函数公式仍是需要的 ) 是比较合适的 n 6.2.2 T——设计中所采用的燃气温度(K) 2 小时用气负荷资料 其新钢管当量粗糙度多数国家认定为K=0.045mm左右 居民生活和商业用户燃气小时计算流量(0℃和101.325kPa) 它比新钢管K=0.045mm 则有1.5P Re——雷诺数(无量纲) K——管壁内表面的当量绝对粗糙度(mm) 取K=0.1mm比新钢管取K=0.045mm 燃气作为建筑物采暖通风和空调的能源时 0 l——燃气管道的计算长度(m) n 5 柯列勃洛克公式是个隐函数公式 这有种种原因 可认为其计算结果是基本一致的 3 n 3 此时燃气管道的计算流量宜按本规范第10.2.9条规定计算 ρ——燃气的密度(kg/m 时 当燃具前压力波动为0.5P 低压燃气管道压力数值表(Pa) 是可行的 16410中已有明确规定 按最不利情况即当用气量最小时 6.2.1 如北京为1958年开始建设的 但由调压站到此用户之间最小仍有约150Pa的阻力(包括煤气表阻力和干 日 原苏联建筑法规《燃气供应 在实际工程设计中参照其他国家规范对天然气管道采用当量粗糙度的情况 作为参考 ——燃气管道起点的压力(绝对压力 P 6 宜按式(6.2.6-2)计算 故低压燃气管道(包括室内和室外)总的计算压力降最少还可加大的150Pa 为了满足用户小时最大用气量的需要 6.2.6 靠近调压站的最近用户处有可能达到压力的最大值 d 下工作 符合今后广泛开展国际合作的需要 计算结果与K=0.045mm十分接近 /h) 1 对庭院燃气支管和独立的居民点 △P 宜按下式计算 6.2.4 还应根据情况进行技术经济分析比较后确定 6.2.5 可见取0.75P 参照表24的情况 故△P 表25 该小时最大用气量应根据所有用户燃气用气量的变化叠加后确定 引用了二组新钢管实测数据 式中 △P——燃气管道摩擦阻力损失(Pa) n K 3 宜按式(6.2.6-2)和附录C第C.0.1条第1 约为P 1 当燃气管道的摩擦阻力系数采用手算时 在实际使用中不宜把燃具长期置于0.5P 其热负荷与采用热水(或蒸汽)供热的热负荷是基本一致的 可按下式计算 低压燃气管道单位长度的摩擦阻力损失应按下式计算 d 因为这样不合乎中国人炒菜的要求 工业企业和燃气汽车用户燃气小时计算流量 ——低压燃具的额定压力(Pa) 注 P 表26 λ值平均增大18.58% 这样一个压力相当于燃气灶热负荷比额定热负荷仅仅降低了13.4% 6.2.1 kPa) 含室内燃气管道允许阻力损失 城镇燃气管道的计算流量 即对居民生活和商业用户宜按第6.2.2条计算 符合中国加入WTO以后技术上和国际接轨的需要 北京较低 Z———压缩因子 上海居中 对于我国使用的焊接钢管 有较扎实的理论和实验基础 2款计算 城镇燃气低压管道从调压站到最远燃具管道允许阻力损失 考虑到人工煤气气质条件 其λ值平均增大10.24% 编制成月 的1.0倍 λ——燃气管道摩擦阻力系数 反推当量粗糙度K为0.14~0.18mm /h) ——日高峰系数 △P 天然气 至于其在街区干管 不得不把调压站出口压力向上提 3 本条所述的低压燃气管道是指和用户燃具直接相接的低压燃气管道(其中间不经调压器) 3 要求不断提高输气能力 n 应根据该城镇各类用户燃气用量(或燃料用量)的变化情况 6.2.7 城镇燃气管道的计算流量 Z取1 ——燃气管道终点的压力(绝对压力 采暖通风和空调所需燃气小时计算流量 应按计算月的小时最大用气量计算 其计算上产生的困难 n 式中 根据1990年的燃气设计规范专题报告中的二组旧钢管实测数据 ——月高峰系数 表24 6.2.8 n 综上所述燃气灶具前的实际压力允许波动范围取为0.75P d 我国目前大多采用区域调压站 =0.75P 但考虑到使用部门的实际情况 但生活热水的热负荷不计在内 注 Q n n 室外燃气管道的局部阻力损失可按燃气管道摩擦阻力损失的5%~10%进行计算 编制成月 室内燃气管道允许阻力损失应按本规范第10.2.11条确定 T n 独立居民小区和庭院燃气支管的计算流量宜按本规范第10.2.9条规定执行 因为生活热水的热负荷在燃气供应中已计入用户的用气量指标中 计算月中最大用气量日的小时最大用气量和该日小时平均用气量之比 宜采用附录C公式 列出的数值如表28可供参考 对广大用户不会产生影响 n 出口燃气压力保持不变 +150 本条所给出的只是低压燃气管道的总压力降